Pinview: Implicit Feedback in Content-Based Image Retrieval


Peter Auer, Zakria Hussain, Samuel Kaski, Arto Klami, Jussi Kujala, Jorma Laaksonen, Alex P. Leung, Kitsuchart Pasupa, John Shawe-Taylor ;
Proceedings of the First Workshop on Applications of Pattern Analysis, PMLR 11:51-57, 2010.


This paper describes Pinview, a content-based image retrieval system that exploits implicit relevance feedback during a search session. Pinview contains several novel methods that infer the intent of the user. From relevance feedback, such as eye movements or clicks, and visual features of images Pinview learns a similarity metric between images which depends on the current interests of the user. It then retrieves images with a specialized reinforcement learning algorithm that balances the tradeoff between exploring new images and exploiting the already inferred interests of the user. In practise, we have integrated Pinview to the content-based image retrieval system PicSOM, in order to apply it to real-world image databases. Preliminary experiments show that eye movements provide a rich input modality from which it is possible to learn the interests of the user.

Related Material