[edit]

# On Densification for Minwise Hashing

*Proceedings of The 35th Uncertainty in Artificial Intelligence Conference*, PMLR 115:831-840, 2020.

#### Abstract

One Permutation Hashing (OPH) is a significantly more efficient alternative to the popular minwise hashing. To produce a sketch of size $k$, OPH requires just one hash function whereas the classical minwise hashing requires $k$ hash functions. However, OPH does not have the desirable locality sensitive hashing (LSH) property that is important for indexing. [Srivastava and Li 2014, ICML] proposed the novel idea of densification to produce LSH sketches from OPH sketches, and gave the first densification routine. In this paper, we give a necessary and sufficient condition for a densification routine to result in LSH sketches when applied to OPH sketches. Furthermore, we give a novel densification routine that for every input, takes O($k \log k$) time in expectation and achieves better variance than the previous best bound obtained by [Srivastava 2017]. The running time of the densification routine given in [Srivastava 2017] for worst case inputs is O($k^2$) in expectation.