[edit]

# Privately Answering Classification Queries in the Agnostic PAC Model

*Proceedings of the 31st International Conference on Algorithmic Learning Theory*, PMLR 117:687-703, 2020.

#### Abstract

We revisit the problem of differentially private release of classification queries. In this problem, the goal is to design an algorithm that can accurately answer a sequence of classification queries based on a private training set while ensuring differential privacy. We formally study this problem in the agnostic PAC model and derive a new upper bound on the private sample complexity. Our results improve over those obtained in a recent work (Bassily et al., 2018) for the agnostic PAC setting. In particular, we give an improved construction that yields a tighter upper bound on the sample complexity. Moreover, unlike (Bassily et al., 2018), our accuracy guarantee does not involve any blow-up in the approximation error associated with the given hypothesis class. Given any hypothesis class with VC-dimension $d$, we show that our construction can privately answer up to $m$ classification queries with average excess error $\alpha$ using a private sample of size $\approx \frac{d}{\alpha^2}\,\max\left(1, \sqrt{m}\,\alpha^{3/2}\right)$. Using recent results on private learning with auxiliary public data, we extend our construction to show that one can privately answer any number of classification queries with average excess error $\alpha$ using a private sample of size $\approx \frac{d}{\alpha^2}\,\max\left(1, \sqrt{d}\,\alpha\right)$. When $\alpha=O\left(\frac{1}{\sqrt{d}}\right)$, our private sample complexity bound is essentially optimal.