Training Neural Networks for and by Interpolation

Leonard Berrada, Andrew Zisserman, M. Pawan Kumar
Proceedings of the 37th International Conference on Machine Learning, PMLR 119:799-809, 2020.

Abstract

In modern supervised learning, many deep neural networks are able to interpolate the data: the empirical loss can be driven to near zero on all samples simultaneously. In this work, we explicitly exploit this interpolation property for the design of a new optimization algorithm for deep learning, which we term Adaptive Learning-rates for Interpolation with Gradients (ALI-G). ALI-G retains the two main advantages of Stochastic Gradient Descent (SGD), which are (i) a low computational cost per iteration and (ii) good generalization performance in practice. At each iteration, ALI-G exploits the interpolation property to compute an adaptive learning-rate in closed form. In addition, ALI-G clips the learning-rate to a maximal value, which we prove to be helpful for non-convex problems. Crucially, in contrast to the learning-rate of SGD, the maximal learning-rate of ALI-G does not require a decay schedule. This makes ALI-G considerably easier to tune than SGD. We prove the convergence of ALI-G in various stochastic settings. Notably, we tackle the realistic case where the interpolation property is satisfied up to some tolerance. We also provide experiments on a variety of deep learning architectures and tasks: (i) learning a differentiable neural computer; (ii) training a wide residual network on the SVHN data set; (iii) training a Bi-LSTM on the SNLI data set; and (iv) training wide residual networks and densely connected networks on the CIFAR data sets. ALI-G produces state-of-the-art results among adaptive methods, and even yields comparable performance with SGD, which requires manually tuned learning-rate schedules. Furthermore, ALI-G is simple to implement in any standard deep learning framework and can be used as a drop-in replacement in existing code.

Cite this Paper


BibTeX
@InProceedings{pmlr-v119-berrada20a, title = {Training Neural Networks for and by Interpolation}, author = {Berrada, Leonard and Zisserman, Andrew and Kumar, M. Pawan}, booktitle = {Proceedings of the 37th International Conference on Machine Learning}, pages = {799--809}, year = {2020}, editor = {Hal Daumé III and Aarti Singh}, volume = {119}, series = {Proceedings of Machine Learning Research}, month = {13--18 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v119/berrada20a/berrada20a.pdf}, url = { http://proceedings.mlr.press/v119/berrada20a.html }, abstract = {In modern supervised learning, many deep neural networks are able to interpolate the data: the empirical loss can be driven to near zero on all samples simultaneously. In this work, we explicitly exploit this interpolation property for the design of a new optimization algorithm for deep learning, which we term Adaptive Learning-rates for Interpolation with Gradients (ALI-G). ALI-G retains the two main advantages of Stochastic Gradient Descent (SGD), which are (i) a low computational cost per iteration and (ii) good generalization performance in practice. At each iteration, ALI-G exploits the interpolation property to compute an adaptive learning-rate in closed form. In addition, ALI-G clips the learning-rate to a maximal value, which we prove to be helpful for non-convex problems. Crucially, in contrast to the learning-rate of SGD, the maximal learning-rate of ALI-G does not require a decay schedule. This makes ALI-G considerably easier to tune than SGD. We prove the convergence of ALI-G in various stochastic settings. Notably, we tackle the realistic case where the interpolation property is satisfied up to some tolerance. We also provide experiments on a variety of deep learning architectures and tasks: (i) learning a differentiable neural computer; (ii) training a wide residual network on the SVHN data set; (iii) training a Bi-LSTM on the SNLI data set; and (iv) training wide residual networks and densely connected networks on the CIFAR data sets. ALI-G produces state-of-the-art results among adaptive methods, and even yields comparable performance with SGD, which requires manually tuned learning-rate schedules. Furthermore, ALI-G is simple to implement in any standard deep learning framework and can be used as a drop-in replacement in existing code.} }
Endnote
%0 Conference Paper %T Training Neural Networks for and by Interpolation %A Leonard Berrada %A Andrew Zisserman %A M. Pawan Kumar %B Proceedings of the 37th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2020 %E Hal Daumé III %E Aarti Singh %F pmlr-v119-berrada20a %I PMLR %P 799--809 %U http://proceedings.mlr.press/v119/berrada20a.html %V 119 %X In modern supervised learning, many deep neural networks are able to interpolate the data: the empirical loss can be driven to near zero on all samples simultaneously. In this work, we explicitly exploit this interpolation property for the design of a new optimization algorithm for deep learning, which we term Adaptive Learning-rates for Interpolation with Gradients (ALI-G). ALI-G retains the two main advantages of Stochastic Gradient Descent (SGD), which are (i) a low computational cost per iteration and (ii) good generalization performance in practice. At each iteration, ALI-G exploits the interpolation property to compute an adaptive learning-rate in closed form. In addition, ALI-G clips the learning-rate to a maximal value, which we prove to be helpful for non-convex problems. Crucially, in contrast to the learning-rate of SGD, the maximal learning-rate of ALI-G does not require a decay schedule. This makes ALI-G considerably easier to tune than SGD. We prove the convergence of ALI-G in various stochastic settings. Notably, we tackle the realistic case where the interpolation property is satisfied up to some tolerance. We also provide experiments on a variety of deep learning architectures and tasks: (i) learning a differentiable neural computer; (ii) training a wide residual network on the SVHN data set; (iii) training a Bi-LSTM on the SNLI data set; and (iv) training wide residual networks and densely connected networks on the CIFAR data sets. ALI-G produces state-of-the-art results among adaptive methods, and even yields comparable performance with SGD, which requires manually tuned learning-rate schedules. Furthermore, ALI-G is simple to implement in any standard deep learning framework and can be used as a drop-in replacement in existing code.
APA
Berrada, L., Zisserman, A. & Kumar, M.P.. (2020). Training Neural Networks for and by Interpolation. Proceedings of the 37th International Conference on Machine Learning, in Proceedings of Machine Learning Research 119:799-809 Available from http://proceedings.mlr.press/v119/berrada20a.html .

Related Material