[edit]
High-dimensional Robust Mean Estimation via Gradient Descent
Proceedings of the 37th International Conference on Machine Learning, PMLR 119:1768-1778, 2020.
Abstract
We study the problem of high-dimensional robust mean estimation in the presence of a constant fraction of adversarial outliers. A recent line of work has provided sophisticated polynomial-time algorithms for this problem with dimension-independent error guarantees for a range of natural distribution families. In this work, we show that a natural non-convex formulation of the problem can be solved directly by gradient descent. Our approach leverages a novel structural lemma, roughly showing that any approximate stationary point of our non-convex objective gives a near-optimal solution to the underlying robust estimation task. Our work establishes an intriguing connection between algorithmic high-dimensional robust statistics and non-convex optimization, which may have broader applications to other robust estimation tasks.