Soft Threshold Weight Reparameterization for Learnable Sparsity

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham Kakade, Ali Farhadi
Proceedings of the 37th International Conference on Machine Learning, PMLR 119:5544-5555, 2020.

Abstract

Sparsity in Deep Neural Networks (DNNs) is studied extensively with the focus of maximizing prediction accuracy given an overall parameter budget. Existing methods rely on uniform or heuristic non-uniform sparsity budgets which have sub-optimal layer-wise parameter allocation resulting in a) lower prediction accuracy or b) higher inference cost (FLOPs). This work proposes Soft Threshold Reparameterization (STR), a novel use of the soft-threshold operator on DNN weights. STR smoothly induces sparsity while learning pruning thresholds thereby obtaining a non-uniform sparsity budget. Our method achieves state-of-the-art accuracy for unstructured sparsity in CNNs (ResNet50 and MobileNetV1 on ImageNet-1K), and, additionally, learns non-uniform budgets that empirically reduce the FLOPs by up to 50%. Notably, STR boosts the accuracy over existing results by up to 10% in the ultra sparse (99%) regime and can also be used to induce low-rank (structured sparsity) in RNNs. In short, STR is a simple mechanism which learns effective sparsity budgets that contrast with popular heuristics. Code, pretrained models and sparsity budgets are at https://github.com/RAIVNLab/STR.

Cite this Paper


BibTeX
@InProceedings{pmlr-v119-kusupati20a, title = {Soft Threshold Weight Reparameterization for Learnable Sparsity}, author = {Kusupati, Aditya and Ramanujan, Vivek and Somani, Raghav and Wortsman, Mitchell and Jain, Prateek and Kakade, Sham and Farhadi, Ali}, booktitle = {Proceedings of the 37th International Conference on Machine Learning}, pages = {5544--5555}, year = {2020}, editor = {Hal Daumé III and Aarti Singh}, volume = {119}, series = {Proceedings of Machine Learning Research}, month = {13--18 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v119/kusupati20a/kusupati20a.pdf}, url = { http://proceedings.mlr.press/v119/kusupati20a.html }, abstract = {Sparsity in Deep Neural Networks (DNNs) is studied extensively with the focus of maximizing prediction accuracy given an overall parameter budget. Existing methods rely on uniform or heuristic non-uniform sparsity budgets which have sub-optimal layer-wise parameter allocation resulting in a) lower prediction accuracy or b) higher inference cost (FLOPs). This work proposes Soft Threshold Reparameterization (STR), a novel use of the soft-threshold operator on DNN weights. STR smoothly induces sparsity while learning pruning thresholds thereby obtaining a non-uniform sparsity budget. Our method achieves state-of-the-art accuracy for unstructured sparsity in CNNs (ResNet50 and MobileNetV1 on ImageNet-1K), and, additionally, learns non-uniform budgets that empirically reduce the FLOPs by up to 50%. Notably, STR boosts the accuracy over existing results by up to 10% in the ultra sparse (99%) regime and can also be used to induce low-rank (structured sparsity) in RNNs. In short, STR is a simple mechanism which learns effective sparsity budgets that contrast with popular heuristics. Code, pretrained models and sparsity budgets are at https://github.com/RAIVNLab/STR.} }
Endnote
%0 Conference Paper %T Soft Threshold Weight Reparameterization for Learnable Sparsity %A Aditya Kusupati %A Vivek Ramanujan %A Raghav Somani %A Mitchell Wortsman %A Prateek Jain %A Sham Kakade %A Ali Farhadi %B Proceedings of the 37th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2020 %E Hal Daumé III %E Aarti Singh %F pmlr-v119-kusupati20a %I PMLR %P 5544--5555 %U http://proceedings.mlr.press/v119/kusupati20a.html %V 119 %X Sparsity in Deep Neural Networks (DNNs) is studied extensively with the focus of maximizing prediction accuracy given an overall parameter budget. Existing methods rely on uniform or heuristic non-uniform sparsity budgets which have sub-optimal layer-wise parameter allocation resulting in a) lower prediction accuracy or b) higher inference cost (FLOPs). This work proposes Soft Threshold Reparameterization (STR), a novel use of the soft-threshold operator on DNN weights. STR smoothly induces sparsity while learning pruning thresholds thereby obtaining a non-uniform sparsity budget. Our method achieves state-of-the-art accuracy for unstructured sparsity in CNNs (ResNet50 and MobileNetV1 on ImageNet-1K), and, additionally, learns non-uniform budgets that empirically reduce the FLOPs by up to 50%. Notably, STR boosts the accuracy over existing results by up to 10% in the ultra sparse (99%) regime and can also be used to induce low-rank (structured sparsity) in RNNs. In short, STR is a simple mechanism which learns effective sparsity budgets that contrast with popular heuristics. Code, pretrained models and sparsity budgets are at https://github.com/RAIVNLab/STR.
APA
Kusupati, A., Ramanujan, V., Somani, R., Wortsman, M., Jain, P., Kakade, S. & Farhadi, A.. (2020). Soft Threshold Weight Reparameterization for Learnable Sparsity. Proceedings of the 37th International Conference on Machine Learning, in Proceedings of Machine Learning Research 119:5544-5555 Available from http://proceedings.mlr.press/v119/kusupati20a.html .

Related Material