Oracle Efficient Private Non-Convex Optimization

Seth Neel, Aaron Roth, Giuseppe Vietri, Steven Wu
Proceedings of the 37th International Conference on Machine Learning, PMLR 119:7243-7252, 2020.

Abstract

One of the most effective algorithms for differentially private learning and optimization is \emph{objective perturbation}. This technique augments a given optimization problem (e.g. deriving from an ERM problem) with a random linear term, and then exactly solves it. However, to date, analyses of this approach crucially rely on the convexity and smoothness of the objective function. We give two algorithms that extend this approach substantially. The first algorithm requires nothing except boundedness of the loss function, and operates over a discrete domain. Its privacy and accuracy guarantees hold even without assuming convexity. We are able to extend traditional analyses of objective perturbation by introducing a novel “normalization“ step into the algorithm, which provides enough stability to be differentially private even without second-order conditions. The second algorithm operates over a continuous domain and requires only that the loss function be bounded and Lipschitz in its continuous parameter. Its privacy analysis does not even require convexity. Its accuracy analysis does require convexity, but does not require second order conditions like smoothness. We complement our theoretical results with an empirical evaluation of the non-convex case, in which we use an integer program solver as our optimization oracle. We find that for the problem of learning linear classifiers, directly optimizing for 0/1 loss using our approach can out-perform the more standard approach of privately optimizing a convex-surrogate loss function on the Adult dataset.

Cite this Paper


BibTeX
@InProceedings{pmlr-v119-neel20a, title = {Oracle Efficient Private Non-Convex Optimization}, author = {Neel, Seth and Roth, Aaron and Vietri, Giuseppe and Wu, Steven}, booktitle = {Proceedings of the 37th International Conference on Machine Learning}, pages = {7243--7252}, year = {2020}, editor = {III, Hal Daumé and Singh, Aarti}, volume = {119}, series = {Proceedings of Machine Learning Research}, month = {13--18 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v119/neel20a/neel20a.pdf}, url = {https://proceedings.mlr.press/v119/neel20a.html}, abstract = {One of the most effective algorithms for differentially private learning and optimization is \emph{objective perturbation}. This technique augments a given optimization problem (e.g. deriving from an ERM problem) with a random linear term, and then exactly solves it. However, to date, analyses of this approach crucially rely on the convexity and smoothness of the objective function. We give two algorithms that extend this approach substantially. The first algorithm requires nothing except boundedness of the loss function, and operates over a discrete domain. Its privacy and accuracy guarantees hold even without assuming convexity. We are able to extend traditional analyses of objective perturbation by introducing a novel “normalization“ step into the algorithm, which provides enough stability to be differentially private even without second-order conditions. The second algorithm operates over a continuous domain and requires only that the loss function be bounded and Lipschitz in its continuous parameter. Its privacy analysis does not even require convexity. Its accuracy analysis does require convexity, but does not require second order conditions like smoothness. We complement our theoretical results with an empirical evaluation of the non-convex case, in which we use an integer program solver as our optimization oracle. We find that for the problem of learning linear classifiers, directly optimizing for 0/1 loss using our approach can out-perform the more standard approach of privately optimizing a convex-surrogate loss function on the Adult dataset.} }
Endnote
%0 Conference Paper %T Oracle Efficient Private Non-Convex Optimization %A Seth Neel %A Aaron Roth %A Giuseppe Vietri %A Steven Wu %B Proceedings of the 37th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2020 %E Hal Daumé III %E Aarti Singh %F pmlr-v119-neel20a %I PMLR %P 7243--7252 %U https://proceedings.mlr.press/v119/neel20a.html %V 119 %X One of the most effective algorithms for differentially private learning and optimization is \emph{objective perturbation}. This technique augments a given optimization problem (e.g. deriving from an ERM problem) with a random linear term, and then exactly solves it. However, to date, analyses of this approach crucially rely on the convexity and smoothness of the objective function. We give two algorithms that extend this approach substantially. The first algorithm requires nothing except boundedness of the loss function, and operates over a discrete domain. Its privacy and accuracy guarantees hold even without assuming convexity. We are able to extend traditional analyses of objective perturbation by introducing a novel “normalization“ step into the algorithm, which provides enough stability to be differentially private even without second-order conditions. The second algorithm operates over a continuous domain and requires only that the loss function be bounded and Lipschitz in its continuous parameter. Its privacy analysis does not even require convexity. Its accuracy analysis does require convexity, but does not require second order conditions like smoothness. We complement our theoretical results with an empirical evaluation of the non-convex case, in which we use an integer program solver as our optimization oracle. We find that for the problem of learning linear classifiers, directly optimizing for 0/1 loss using our approach can out-perform the more standard approach of privately optimizing a convex-surrogate loss function on the Adult dataset.
APA
Neel, S., Roth, A., Vietri, G. & Wu, S.. (2020). Oracle Efficient Private Non-Convex Optimization. Proceedings of the 37th International Conference on Machine Learning, in Proceedings of Machine Learning Research 119:7243-7252 Available from https://proceedings.mlr.press/v119/neel20a.html.

Related Material