[edit]
Complexity of Finding Stationary Points of Nonconvex Nonsmooth Functions
Proceedings of the 37th International Conference on Machine Learning, PMLR 119:11173-11182, 2020.
Abstract
We provide the first non-asymptotic analysis for finding stationary points of nonsmooth, nonconvex functions. In particular, we study the class of Hadamard semi-differentiable functions, perhaps the largest class of nonsmooth functions for which the chain rule of calculus holds. This class contains important examples such as ReLU neural networks and others with non-differentiable activation functions. First, we show that finding an epsilon-stationary point with first-order methods is impossible in finite time. Therefore, we introduce the notion of (delta, epsilon)-stationarity, a generalization that allows for a point to be within distance delta of an epsilon-stationary point and reduces to epsilon-stationarity for smooth functions. We propose a series of randomized first-order methods and analyze their complexity of finding a (delta, epsilon)-stationary point. Furthermore, we provide a lower bound and show that our stochastic algorithm has min-max optimal dependence on delta. Empirically, our methods perform well for training ReLU neural networks.