Tensor Networks for Medical Image Classification

Raghavendra Selvan, Erik B Dam
; Proceedings of the Third Conference on Medical Imaging with Deep Learning, PMLR 121:721-732, 2020.

Abstract

With the increasing adoption of machine learning tools like neural networks across several domains, interesting connections and comparisons to concepts from other domains are coming to light. In this work, we focus on the class of Tensor Networks, which has been a work horse for physicists in the last two decades to analyse quantum many-body systems. Building on the recent interest in tensor networks for machine learning, we extend the Matrix Product State tensor networks (which can be interpreted as linear classifiers operating in exponentially high dimensional spaces) to be useful in medical image analysis tasks. We focus on classification problems as a first step where we motivate the use of tensor networks and propose adaptions for 2D images using classical image domain concepts such as local orderlessness of images. With the proposed locally orderless tensor network model (Official repository: {https://github.com/raghavian/loTeNet_pytorch/}), we show that tensor networks are capable of attaining performance that is comparable to state-of-the-art deep learning methods. We evaluate the model on two publicly available medical imaging datasets and show performance improvements with fewer model hyperparameters and lesser computational resources compared to relevant baseline methods.

Cite this Paper


BibTeX
@InProceedings{pmlr-v121-selvan20a, title = {Tensor Networks for Medical Image Classification}, author = {Selvan, Raghavendra and Dam, Erik B}, pages = {721--732}, year = {2020}, editor = {Tal Arbel and Ismail Ben Ayed and Marleen de Bruijne and Maxime Descoteaux and Herve Lombaert and Christopher Pal}, volume = {121}, series = {Proceedings of Machine Learning Research}, address = {Montreal, QC, Canada}, month = {06--08 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v121/selvan20a/selvan20a.pdf}, url = {http://proceedings.mlr.press/v121/selvan20a.html}, abstract = {With the increasing adoption of machine learning tools like neural networks across several domains, interesting connections and comparisons to concepts from other domains are coming to light. In this work, we focus on the class of Tensor Networks, which has been a work horse for physicists in the last two decades to analyse quantum many-body systems. Building on the recent interest in tensor networks for machine learning, we extend the Matrix Product State tensor networks (which can be interpreted as linear classifiers operating in exponentially high dimensional spaces) to be useful in medical image analysis tasks. We focus on classification problems as a first step where we motivate the use of tensor networks and propose adaptions for 2D images using classical image domain concepts such as local orderlessness of images. With the proposed locally orderless tensor network model (Official repository: {https://github.com/raghavian/loTeNet_pytorch/}), we show that tensor networks are capable of attaining performance that is comparable to state-of-the-art deep learning methods. We evaluate the model on two publicly available medical imaging datasets and show performance improvements with fewer model hyperparameters and lesser computational resources compared to relevant baseline methods.} }
Endnote
%0 Conference Paper %T Tensor Networks for Medical Image Classification %A Raghavendra Selvan %A Erik B Dam %B Proceedings of the Third Conference on Medical Imaging with Deep Learning %C Proceedings of Machine Learning Research %D 2020 %E Tal Arbel %E Ismail Ben Ayed %E Marleen de Bruijne %E Maxime Descoteaux %E Herve Lombaert %E Christopher Pal %F pmlr-v121-selvan20a %I PMLR %J Proceedings of Machine Learning Research %P 721--732 %U http://proceedings.mlr.press %V 121 %W PMLR %X With the increasing adoption of machine learning tools like neural networks across several domains, interesting connections and comparisons to concepts from other domains are coming to light. In this work, we focus on the class of Tensor Networks, which has been a work horse for physicists in the last two decades to analyse quantum many-body systems. Building on the recent interest in tensor networks for machine learning, we extend the Matrix Product State tensor networks (which can be interpreted as linear classifiers operating in exponentially high dimensional spaces) to be useful in medical image analysis tasks. We focus on classification problems as a first step where we motivate the use of tensor networks and propose adaptions for 2D images using classical image domain concepts such as local orderlessness of images. With the proposed locally orderless tensor network model (Official repository: {https://github.com/raghavian/loTeNet_pytorch/}), we show that tensor networks are capable of attaining performance that is comparable to state-of-the-art deep learning methods. We evaluate the model on two publicly available medical imaging datasets and show performance improvements with fewer model hyperparameters and lesser computational resources compared to relevant baseline methods.
APA
Selvan, R. & Dam, E.B.. (2020). Tensor Networks for Medical Image Classification. Proceedings of the Third Conference on Medical Imaging with Deep Learning, in PMLR 121:721-732

Related Material