[edit]

# Causal screening in dynamical systems

*Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI)*, PMLR 124:310-319, 2020.

#### Abstract

Many classical algorithms output graphical representations of causal structures by testing conditional independence among a set of random variables. In dynamical systems, local independence can be used analogously as a testable implication of the underlying data-generating process. We suggest some inexpensive methods for causal screening which provide output with a sound causal interpretation under the assumption of ancestral faithfulness. The popular model class of linear Hawkes processes is used to provide an example of a dynamical causal model. We argue that for sparse causal graphs the output will often be close to complete. We give examples of this framework and apply it to a challenging biological system.