Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized Hamiltonian Monte Carlo

Yin Tat Lee, Ruoqi Shen, Kevin Tian
; Proceedings of Thirty Third Conference on Learning Theory, PMLR 125:2565-2597, 2020.

Abstract

We show that the gradient norm $\norm{\nabla f(x)}$ for $x \sim \exp(-f(x))$, where $f$ is strongly convex and smooth, concentrates tightly around its mean. This removes a barrier in the prior state-of-the-art analysis for the well-studied Metropolized Hamiltonian Monte Carlo (HMC) algorithm for sampling from a strongly logconcave distribution. We correspondingly demonstrate that Metropolized HMC mixes in $\tilde{O}(\kappa d)$ iterations, improving upon the $\tilde{O}(\kappa^{1.5}\sqrt{d} + \kappa d)$ runtime of prior work by a factor $(\kappa/d)^{1/2}$ when the condition number $\kappa$ is large. Our mixing time analysis introduces several techniques which to our knowledge have not appeared in the literature and may be of independent interest, including restrictions to a nonconvex set with good conductance behavior, and a new reduction technique for boosting a constant-accuracy total variation guarantee under weak warmness assumptions. This is the first high-accuracy mixing time result for logconcave distributions using only first-order function information which achieves linear dependence on $\kappa$; we also give evidence that this dependence is likely to be necessary for standard Metropolized first-order methods.

Cite this Paper


BibTeX
@InProceedings{pmlr-v125-lee20b, title = {Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized Hamiltonian Monte Carlo}, author = {Lee, Yin Tat and Shen, Ruoqi and Tian, Kevin}, pages = {2565--2597}, year = {2020}, editor = {Jacob Abernethy and Shivani Agarwal}, volume = {125}, series = {Proceedings of Machine Learning Research}, address = {}, month = {09--12 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v125/lee20b/lee20b.pdf}, url = {http://proceedings.mlr.press/v125/lee20b.html}, abstract = { We show that the gradient norm $\norm{\nabla f(x)}$ for $x \sim \exp(-f(x))$, where $f$ is strongly convex and smooth, concentrates tightly around its mean. This removes a barrier in the prior state-of-the-art analysis for the well-studied Metropolized Hamiltonian Monte Carlo (HMC) algorithm for sampling from a strongly logconcave distribution. We correspondingly demonstrate that Metropolized HMC mixes in $\tilde{O}(\kappa d)$ iterations, improving upon the $\tilde{O}(\kappa^{1.5}\sqrt{d} + \kappa d)$ runtime of prior work by a factor $(\kappa/d)^{1/2}$ when the condition number $\kappa$ is large. Our mixing time analysis introduces several techniques which to our knowledge have not appeared in the literature and may be of independent interest, including restrictions to a nonconvex set with good conductance behavior, and a new reduction technique for boosting a constant-accuracy total variation guarantee under weak warmness assumptions. This is the first high-accuracy mixing time result for logconcave distributions using only first-order function information which achieves linear dependence on $\kappa$; we also give evidence that this dependence is likely to be necessary for standard Metropolized first-order methods.} }
Endnote
%0 Conference Paper %T Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized Hamiltonian Monte Carlo %A Yin Tat Lee %A Ruoqi Shen %A Kevin Tian %B Proceedings of Thirty Third Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2020 %E Jacob Abernethy %E Shivani Agarwal %F pmlr-v125-lee20b %I PMLR %J Proceedings of Machine Learning Research %P 2565--2597 %U http://proceedings.mlr.press %V 125 %W PMLR %X We show that the gradient norm $\norm{\nabla f(x)}$ for $x \sim \exp(-f(x))$, where $f$ is strongly convex and smooth, concentrates tightly around its mean. This removes a barrier in the prior state-of-the-art analysis for the well-studied Metropolized Hamiltonian Monte Carlo (HMC) algorithm for sampling from a strongly logconcave distribution. We correspondingly demonstrate that Metropolized HMC mixes in $\tilde{O}(\kappa d)$ iterations, improving upon the $\tilde{O}(\kappa^{1.5}\sqrt{d} + \kappa d)$ runtime of prior work by a factor $(\kappa/d)^{1/2}$ when the condition number $\kappa$ is large. Our mixing time analysis introduces several techniques which to our knowledge have not appeared in the literature and may be of independent interest, including restrictions to a nonconvex set with good conductance behavior, and a new reduction technique for boosting a constant-accuracy total variation guarantee under weak warmness assumptions. This is the first high-accuracy mixing time result for logconcave distributions using only first-order function information which achieves linear dependence on $\kappa$; we also give evidence that this dependence is likely to be necessary for standard Metropolized first-order methods.
APA
Lee, Y.T., Shen, R. & Tian, K.. (2020). Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized Hamiltonian Monte Carlo. Proceedings of Thirty Third Conference on Learning Theory, in PMLR 125:2565-2597

Related Material