[edit]
Self-Tuning Bandits over Unknown Covariate-Shifts
Proceedings of the 32nd International Conference on Algorithmic Learning Theory, PMLR 132:1114-1156, 2021.
Abstract
Bandits with covariates, a.k.a. \emph{contextual bandits}, address situations where optimal actions (or arms) at a given time $t$, depend on a \emph{context} $x_t$, e.g., a new patient’s medical history, a consumer’s past purchases. While it is understood that the distribution of contexts might change over time, e.g., due to seasonalities, or deployment to new environments, the bulk of studies concern the most adversarial such changes, resulting in regret bounds that are often worst-case in nature. \emph{Covariate-shift} on the other hand has been considered in classification as a middle-ground formalism that can capture mild to relatively severe changes in distributions. We consider nonparametric bandits under such middle-ground scenarios, and derive new regret bounds that tightly capture a continuum of changes in context distribution. Furthermore, we show that these rates can be \emph{adaptively} attained without knowledge of the time of shift (change point) nor the amount of shift.