Towards a Query-Optimal and Time-Efficient Algorithm for Clustering with a Faulty Oracle

Pan Peng, Jiapeng Zhang
Proceedings of Thirty Fourth Conference on Learning Theory, PMLR 134:3662-3680, 2021.

Abstract

Motivated by applications in crowdsourced entity resolution in database, signed edge prediction in social networks and correlation clustering, Mazumdar and Saha [NIPS 2017] proposed an elegant theoretical model for studying clustering with a faulty oracle. In this model, given a set of $n$ items which belong to $k$ unknown groups (or clusters), our goal is to recover the clusters by asking pairwise queries to an oracle. This oracle can answer the query that “do items $u$ and $v$ belong to the same cluster?”. However, the answer to each pairwise query errs with probability $\epsilon$, for some $\epsilon\in(0,\frac12)$. Mazumdar and Saha provided two algorithms under this model: one algorithm is query-optimal while time-inefficient (i.e., running in quasi-polynomial time), the other is time efficient (i.e., in polynomial time) while query-suboptimal. Larsen, Mitzenmacher and Tsourakakis [WWW 2020] then gave a new time-efficient algorithm for the special case of $2$ clusters, which is query-optimal if the bias $\delta:=1-2\epsilon$ of the model is large. It was left as an open question whether one can obtain a query-optimal, time-efficient algorithm for the general case of $k$ clusters and other regimes of $\delta$. In this paper, we make progress on the above question and provide a time-efficient algorithm with nearly-optimal query complexity (up to a factor of $O(\log^2 n)$) for all constant $k$ and any $\delta$ in the regime when information-theoretic recovery is possible. Our algorithm is built on a connection to the stochastic block model.

Cite this Paper


BibTeX
@InProceedings{pmlr-v134-peng21a, title = {Towards a Query-Optimal and Time-Efficient Algorithm for Clustering with a Faulty Oracle}, author = {Peng, Pan and Zhang, Jiapeng}, booktitle = {Proceedings of Thirty Fourth Conference on Learning Theory}, pages = {3662--3680}, year = {2021}, editor = {Belkin, Mikhail and Kpotufe, Samory}, volume = {134}, series = {Proceedings of Machine Learning Research}, month = {15--19 Aug}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v134/peng21a/peng21a.pdf}, url = {https://proceedings.mlr.press/v134/peng21a.html}, abstract = {Motivated by applications in crowdsourced entity resolution in database, signed edge prediction in social networks and correlation clustering, Mazumdar and Saha [NIPS 2017] proposed an elegant theoretical model for studying clustering with a faulty oracle. In this model, given a set of $n$ items which belong to $k$ unknown groups (or clusters), our goal is to recover the clusters by asking pairwise queries to an oracle. This oracle can answer the query that “do items $u$ and $v$ belong to the same cluster?”. However, the answer to each pairwise query errs with probability $\epsilon$, for some $\epsilon\in(0,\frac12)$. Mazumdar and Saha provided two algorithms under this model: one algorithm is query-optimal while time-inefficient (i.e., running in quasi-polynomial time), the other is time efficient (i.e., in polynomial time) while query-suboptimal. Larsen, Mitzenmacher and Tsourakakis [WWW 2020] then gave a new time-efficient algorithm for the special case of $2$ clusters, which is query-optimal if the bias $\delta:=1-2\epsilon$ of the model is large. It was left as an open question whether one can obtain a query-optimal, time-efficient algorithm for the general case of $k$ clusters and other regimes of $\delta$. In this paper, we make progress on the above question and provide a time-efficient algorithm with nearly-optimal query complexity (up to a factor of $O(\log^2 n)$) for all constant $k$ and any $\delta$ in the regime when information-theoretic recovery is possible. Our algorithm is built on a connection to the stochastic block model.} }
Endnote
%0 Conference Paper %T Towards a Query-Optimal and Time-Efficient Algorithm for Clustering with a Faulty Oracle %A Pan Peng %A Jiapeng Zhang %B Proceedings of Thirty Fourth Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2021 %E Mikhail Belkin %E Samory Kpotufe %F pmlr-v134-peng21a %I PMLR %P 3662--3680 %U https://proceedings.mlr.press/v134/peng21a.html %V 134 %X Motivated by applications in crowdsourced entity resolution in database, signed edge prediction in social networks and correlation clustering, Mazumdar and Saha [NIPS 2017] proposed an elegant theoretical model for studying clustering with a faulty oracle. In this model, given a set of $n$ items which belong to $k$ unknown groups (or clusters), our goal is to recover the clusters by asking pairwise queries to an oracle. This oracle can answer the query that “do items $u$ and $v$ belong to the same cluster?”. However, the answer to each pairwise query errs with probability $\epsilon$, for some $\epsilon\in(0,\frac12)$. Mazumdar and Saha provided two algorithms under this model: one algorithm is query-optimal while time-inefficient (i.e., running in quasi-polynomial time), the other is time efficient (i.e., in polynomial time) while query-suboptimal. Larsen, Mitzenmacher and Tsourakakis [WWW 2020] then gave a new time-efficient algorithm for the special case of $2$ clusters, which is query-optimal if the bias $\delta:=1-2\epsilon$ of the model is large. It was left as an open question whether one can obtain a query-optimal, time-efficient algorithm for the general case of $k$ clusters and other regimes of $\delta$. In this paper, we make progress on the above question and provide a time-efficient algorithm with nearly-optimal query complexity (up to a factor of $O(\log^2 n)$) for all constant $k$ and any $\delta$ in the regime when information-theoretic recovery is possible. Our algorithm is built on a connection to the stochastic block model.
APA
Peng, P. & Zhang, J.. (2021). Towards a Query-Optimal and Time-Efficient Algorithm for Clustering with a Faulty Oracle. Proceedings of Thirty Fourth Conference on Learning Theory, in Proceedings of Machine Learning Research 134:3662-3680 Available from https://proceedings.mlr.press/v134/peng21a.html.

Related Material