Sum-Product Network Decompilation

Cory Butz, Jhonatan S. Oliveira, Robert Peharz
Proceedings of the 10th International Conference on Probabilistic Graphical Models, PMLR 138:53-64, 2020.

Abstract

There exists a dichotomy between classical probabilistic graphical models, such as Bayesian networks (BNs), and modern tractable models, such as sum-product networks (SPNs). The former generally have intractable inference, but provide a high level of interpretability, while the latter admit a wide range of tractable inference routi nes, but are typically harder to interpret. Due to this dichotomy, tools to convert between BNs and SPNs are desirable. While one direction – compiling BNs into SPNs – is well discussed in Darwiche’s seminal work on arithmetic circuit compilation, the converse direction – decompiling SPNs into BNs – has received surprisingly little attention. In this paper, we fill this gap by proposing SPN2BN, an algorithm that decompiles an SPN into a BN. SPN2BN has several salient features when compared to the only other two works decompiling SPNs. Most significantly, the BNs returned by SPN2BN are minimal independence-maps that are more parsimonious with respect to the introduction of latent variables. Secondly, the output BN produced by SPN2BN can be precisely characterized with respect to a compiled BN. More specifically, a certain set of directed edges will be added to the input BN, giving what we will call the moral-closure. Lastly, it is established that our compilation-decompilation process is idempotent. This has practical significance as it limits the size of the decompiled SPN.

Cite this Paper


BibTeX
@InProceedings{pmlr-v138-butz20a, title = {Sum-Product Network Decompilation}, author = {Butz, Cory and S. Oliveira, Jhonatan and Peharz, Robert}, booktitle = {Proceedings of the 10th International Conference on Probabilistic Graphical Models}, pages = {53--64}, year = {2020}, editor = {Jaeger, Manfred and Nielsen, Thomas Dyhre}, volume = {138}, series = {Proceedings of Machine Learning Research}, month = {23--25 Sep}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v138/butz20a/butz20a.pdf}, url = {https://proceedings.mlr.press/v138/butz20a.html}, abstract = {There exists a dichotomy between classical probabilistic graphical models, such as Bayesian networks (BNs), and modern tractable models, such as sum-product networks (SPNs). The former generally have intractable inference, but provide a high level of interpretability, while the latter admit a wide range of tractable inference routi nes, but are typically harder to interpret. Due to this dichotomy, tools to convert between BNs and SPNs are desirable. While one direction – compiling BNs into SPNs – is well discussed in Darwiche’s seminal work on arithmetic circuit compilation, the converse direction – decompiling SPNs into BNs – has received surprisingly little attention. In this paper, we fill this gap by proposing SPN2BN, an algorithm that decompiles an SPN into a BN. SPN2BN has several salient features when compared to the only other two works decompiling SPNs. Most significantly, the BNs returned by SPN2BN are minimal independence-maps that are more parsimonious with respect to the introduction of latent variables. Secondly, the output BN produced by SPN2BN can be precisely characterized with respect to a compiled BN. More specifically, a certain set of directed edges will be added to the input BN, giving what we will call the moral-closure. Lastly, it is established that our compilation-decompilation process is idempotent. This has practical significance as it limits the size of the decompiled SPN.} }
Endnote
%0 Conference Paper %T Sum-Product Network Decompilation %A Cory Butz %A Jhonatan S. Oliveira %A Robert Peharz %B Proceedings of the 10th International Conference on Probabilistic Graphical Models %C Proceedings of Machine Learning Research %D 2020 %E Manfred Jaeger %E Thomas Dyhre Nielsen %F pmlr-v138-butz20a %I PMLR %P 53--64 %U https://proceedings.mlr.press/v138/butz20a.html %V 138 %X There exists a dichotomy between classical probabilistic graphical models, such as Bayesian networks (BNs), and modern tractable models, such as sum-product networks (SPNs). The former generally have intractable inference, but provide a high level of interpretability, while the latter admit a wide range of tractable inference routi nes, but are typically harder to interpret. Due to this dichotomy, tools to convert between BNs and SPNs are desirable. While one direction – compiling BNs into SPNs – is well discussed in Darwiche’s seminal work on arithmetic circuit compilation, the converse direction – decompiling SPNs into BNs – has received surprisingly little attention. In this paper, we fill this gap by proposing SPN2BN, an algorithm that decompiles an SPN into a BN. SPN2BN has several salient features when compared to the only other two works decompiling SPNs. Most significantly, the BNs returned by SPN2BN are minimal independence-maps that are more parsimonious with respect to the introduction of latent variables. Secondly, the output BN produced by SPN2BN can be precisely characterized with respect to a compiled BN. More specifically, a certain set of directed edges will be added to the input BN, giving what we will call the moral-closure. Lastly, it is established that our compilation-decompilation process is idempotent. This has practical significance as it limits the size of the decompiled SPN.
APA
Butz, C., S. Oliveira, J. & Peharz, R.. (2020). Sum-Product Network Decompilation. Proceedings of the 10th International Conference on Probabilistic Graphical Models, in Proceedings of Machine Learning Research 138:53-64 Available from https://proceedings.mlr.press/v138/butz20a.html.

Related Material