[edit]
Dropout: Explicit Forms and Capacity Control
Proceedings of the 38th International Conference on Machine Learning, PMLR 139:351-361, 2021.
Abstract
We investigate the capacity control provided by dropout in various machine learning problems. First, we study dropout for matrix completion, where it induces a distribution-dependent regularizer that equals the weighted trace-norm of the product of the factors. In deep learning, we show that the distribution-dependent regularizer due to dropout directly controls the Rademacher complexity of the underlying class of deep neural networks. These developments enable us to give concrete generalization error bounds for the dropout algorithm in both matrix completion as well as training deep neural networks.