MC-LSTM: Mass-Conserving LSTM

Pieter-Jan Hoedt, Frederik Kratzert, Daniel Klotz, Christina Halmich, Markus Holzleitner, Grey S Nearing, Sepp Hochreiter, Guenter Klambauer
Proceedings of the 38th International Conference on Machine Learning, PMLR 139:4275-4286, 2021.

Abstract

The success of Convolutional Neural Networks (CNNs) in computer vision is mainly driven by their strong inductive bias, which is strong enough to allow CNNs to solve vision-related tasks with random weights, meaning without learning. Similarly, Long Short-Term Memory (LSTM) has a strong inductive bias towards storing information over time. However, many real-world systems are governed by conservation laws, which lead to the redistribution of particular quantities {—} e.g.in physical and economical systems. Our novel Mass-Conserving LSTM (MC-LSTM) adheres to these conservation laws by extending the inductive bias of LSTM to model the redistribution of those stored quantities. MC-LSTMs set a new state-of-the-art for neural arithmetic units at learning arithmetic operations, such as addition tasks,which have a strong conservation law, as the sum is constant over time. Further, MC-LSTM is applied to traffic forecasting, modeling a pendulum, and a large benchmark dataset in hydrology, where it sets a new state-of-the-art for predicting peak flows. In the hydrology example, we show that MC-LSTM states correlate with real world processes and are therefore interpretable.

Cite this Paper


BibTeX
@InProceedings{pmlr-v139-hoedt21a, title = {MC-LSTM: Mass-Conserving LSTM}, author = {Hoedt, Pieter-Jan and Kratzert, Frederik and Klotz, Daniel and Halmich, Christina and Holzleitner, Markus and Nearing, Grey S and Hochreiter, Sepp and Klambauer, Guenter}, booktitle = {Proceedings of the 38th International Conference on Machine Learning}, pages = {4275--4286}, year = {2021}, editor = {Meila, Marina and Zhang, Tong}, volume = {139}, series = {Proceedings of Machine Learning Research}, month = {18--24 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v139/hoedt21a/hoedt21a.pdf}, url = {https://proceedings.mlr.press/v139/hoedt21a.html}, abstract = {The success of Convolutional Neural Networks (CNNs) in computer vision is mainly driven by their strong inductive bias, which is strong enough to allow CNNs to solve vision-related tasks with random weights, meaning without learning. Similarly, Long Short-Term Memory (LSTM) has a strong inductive bias towards storing information over time. However, many real-world systems are governed by conservation laws, which lead to the redistribution of particular quantities {—} e.g.in physical and economical systems. Our novel Mass-Conserving LSTM (MC-LSTM) adheres to these conservation laws by extending the inductive bias of LSTM to model the redistribution of those stored quantities. MC-LSTMs set a new state-of-the-art for neural arithmetic units at learning arithmetic operations, such as addition tasks,which have a strong conservation law, as the sum is constant over time. Further, MC-LSTM is applied to traffic forecasting, modeling a pendulum, and a large benchmark dataset in hydrology, where it sets a new state-of-the-art for predicting peak flows. In the hydrology example, we show that MC-LSTM states correlate with real world processes and are therefore interpretable.} }
Endnote
%0 Conference Paper %T MC-LSTM: Mass-Conserving LSTM %A Pieter-Jan Hoedt %A Frederik Kratzert %A Daniel Klotz %A Christina Halmich %A Markus Holzleitner %A Grey S Nearing %A Sepp Hochreiter %A Guenter Klambauer %B Proceedings of the 38th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2021 %E Marina Meila %E Tong Zhang %F pmlr-v139-hoedt21a %I PMLR %P 4275--4286 %U https://proceedings.mlr.press/v139/hoedt21a.html %V 139 %X The success of Convolutional Neural Networks (CNNs) in computer vision is mainly driven by their strong inductive bias, which is strong enough to allow CNNs to solve vision-related tasks with random weights, meaning without learning. Similarly, Long Short-Term Memory (LSTM) has a strong inductive bias towards storing information over time. However, many real-world systems are governed by conservation laws, which lead to the redistribution of particular quantities {—} e.g.in physical and economical systems. Our novel Mass-Conserving LSTM (MC-LSTM) adheres to these conservation laws by extending the inductive bias of LSTM to model the redistribution of those stored quantities. MC-LSTMs set a new state-of-the-art for neural arithmetic units at learning arithmetic operations, such as addition tasks,which have a strong conservation law, as the sum is constant over time. Further, MC-LSTM is applied to traffic forecasting, modeling a pendulum, and a large benchmark dataset in hydrology, where it sets a new state-of-the-art for predicting peak flows. In the hydrology example, we show that MC-LSTM states correlate with real world processes and are therefore interpretable.
APA
Hoedt, P., Kratzert, F., Klotz, D., Halmich, C., Holzleitner, M., Nearing, G.S., Hochreiter, S. & Klambauer, G.. (2021). MC-LSTM: Mass-Conserving LSTM. Proceedings of the 38th International Conference on Machine Learning, in Proceedings of Machine Learning Research 139:4275-4286 Available from https://proceedings.mlr.press/v139/hoedt21a.html.

Related Material