Graph Neural Networks for Distributed Linear-Quadratic Control

Fernando Gama, Somayeh Sojoudi
Proceedings of the 3rd Conference on Learning for Dynamics and Control, PMLR 144:111-124, 2021.

Abstract

The linear-quadratic controller is one of the fundamental problems in control theory. The optimal solution is a linear controller that requires access to the state of the entire system at any given time. When considering a network system, this renders the optimal controller a centralized one. The interconnected nature of a network system often demands a distributed controller, where different components of the system are controlled based only on local information. Unlike the classical centralized case, obtaining the optimal distributed controller is usually an intractable problem. Thus, we adopt a graph neural network (GNN) as a parametrization of distributed controllers. GNNs are naturally local and have distributed architectures, making them well suited for learning nonlinear distributed controllers. By casting the linear-quadratic problem as a self-supervised learning problem, we are able to find the best GNN-based distributed controller. We also derive sufficient conditions for the resulting closed-loop system to be stable. We run extensive simulations to study the performance of GNN-based distributed controllers and showcase that they are a computationally efficient parametrization with scalability and transferability capabilities.

Cite this Paper


BibTeX
@InProceedings{pmlr-v144-gama21a, title = {Graph Neural Networks for Distributed Linear-Quadratic Control}, author = {Gama, Fernando and Sojoudi, Somayeh}, booktitle = {Proceedings of the 3rd Conference on Learning for Dynamics and Control}, pages = {111--124}, year = {2021}, editor = {Jadbabaie, Ali and Lygeros, John and Pappas, George J. and A. Parrilo, Pablo and Recht, Benjamin and Tomlin, Claire J. and Zeilinger, Melanie N.}, volume = {144}, series = {Proceedings of Machine Learning Research}, month = {07 -- 08 June}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v144/gama21a/gama21a.pdf}, url = {https://proceedings.mlr.press/v144/gama21a.html}, abstract = {The linear-quadratic controller is one of the fundamental problems in control theory. The optimal solution is a linear controller that requires access to the state of the entire system at any given time. When considering a network system, this renders the optimal controller a centralized one. The interconnected nature of a network system often demands a distributed controller, where different components of the system are controlled based only on local information. Unlike the classical centralized case, obtaining the optimal distributed controller is usually an intractable problem. Thus, we adopt a graph neural network (GNN) as a parametrization of distributed controllers. GNNs are naturally local and have distributed architectures, making them well suited for learning nonlinear distributed controllers. By casting the linear-quadratic problem as a self-supervised learning problem, we are able to find the best GNN-based distributed controller. We also derive sufficient conditions for the resulting closed-loop system to be stable. We run extensive simulations to study the performance of GNN-based distributed controllers and showcase that they are a computationally efficient parametrization with scalability and transferability capabilities.} }
Endnote
%0 Conference Paper %T Graph Neural Networks for Distributed Linear-Quadratic Control %A Fernando Gama %A Somayeh Sojoudi %B Proceedings of the 3rd Conference on Learning for Dynamics and Control %C Proceedings of Machine Learning Research %D 2021 %E Ali Jadbabaie %E John Lygeros %E George J. Pappas %E Pablo A. Parrilo %E Benjamin Recht %E Claire J. Tomlin %E Melanie N. Zeilinger %F pmlr-v144-gama21a %I PMLR %P 111--124 %U https://proceedings.mlr.press/v144/gama21a.html %V 144 %X The linear-quadratic controller is one of the fundamental problems in control theory. The optimal solution is a linear controller that requires access to the state of the entire system at any given time. When considering a network system, this renders the optimal controller a centralized one. The interconnected nature of a network system often demands a distributed controller, where different components of the system are controlled based only on local information. Unlike the classical centralized case, obtaining the optimal distributed controller is usually an intractable problem. Thus, we adopt a graph neural network (GNN) as a parametrization of distributed controllers. GNNs are naturally local and have distributed architectures, making them well suited for learning nonlinear distributed controllers. By casting the linear-quadratic problem as a self-supervised learning problem, we are able to find the best GNN-based distributed controller. We also derive sufficient conditions for the resulting closed-loop system to be stable. We run extensive simulations to study the performance of GNN-based distributed controllers and showcase that they are a computationally efficient parametrization with scalability and transferability capabilities.
APA
Gama, F. & Sojoudi, S.. (2021). Graph Neural Networks for Distributed Linear-Quadratic Control. Proceedings of the 3rd Conference on Learning for Dynamics and Control, in Proceedings of Machine Learning Research 144:111-124 Available from https://proceedings.mlr.press/v144/gama21a.html.

Related Material