Generating Adversarial Disturbances for Controller Verification

Udaya Ghai, David Snyder, Anirudha Majumdar, Elad Hazan
Proceedings of the 3rd Conference on Learning for Dynamics and Control, PMLR 144:1192-1204, 2021.

Abstract

We consider the problem of generating maximally adversarial disturbances for a given controller assuming only blackbox access to it. We propose an online learning approach to this problem that adaptively generates disturbances based on control inputs chosen by the controller. The goal of the disturbance generator is to minimize regret versus a benchmark disturbance-generating policy class, i.e., to maximize the cost incurred by the controller as well as possible compared to the best possible disturbance generator in hindsight (chosen from a benchmark policy class). In the setting where the dynamics are linear and the costs are quadratic, we formulate our problem as an online trust region (OTR) problem with memory and present a new online learning algorithm (MOTR) for this problem. We prove that this method competes with the best disturbance generator in hindsight (chosen from a rich class of benchmark policies that includes linear-dynamical disturbance generating policies). We demonstrate our approach on two simulated examples: (i) synthetically generated linear systems, and (ii) generating wind disturbances for the popular PX4 controller in the AirSim simulator. On these examples, we demonstrate that our approach outperforms several baseline approaches (including H-infinity disturbance generation and gradient-based methods).

Cite this Paper


BibTeX
@InProceedings{pmlr-v144-ghai21a, title = {Generating Adversarial Disturbances for Controller Verification}, author = {Ghai, Udaya and Snyder, David and Majumdar, Anirudha and Hazan, Elad}, booktitle = {Proceedings of the 3rd Conference on Learning for Dynamics and Control}, pages = {1192--1204}, year = {2021}, editor = {Jadbabaie, Ali and Lygeros, John and Pappas, George J. and A. Parrilo, Pablo and Recht, Benjamin and Tomlin, Claire J. and Zeilinger, Melanie N.}, volume = {144}, series = {Proceedings of Machine Learning Research}, month = {07 -- 08 June}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v144/ghai21a/ghai21a.pdf}, url = {https://proceedings.mlr.press/v144/ghai21a.html}, abstract = {We consider the problem of generating maximally adversarial disturbances for a given controller assuming only blackbox access to it. We propose an online learning approach to this problem that adaptively generates disturbances based on control inputs chosen by the controller. The goal of the disturbance generator is to minimize regret versus a benchmark disturbance-generating policy class, i.e., to maximize the cost incurred by the controller as well as possible compared to the best possible disturbance generator in hindsight (chosen from a benchmark policy class). In the setting where the dynamics are linear and the costs are quadratic, we formulate our problem as an online trust region (OTR) problem with memory and present a new online learning algorithm (MOTR) for this problem. We prove that this method competes with the best disturbance generator in hindsight (chosen from a rich class of benchmark policies that includes linear-dynamical disturbance generating policies). We demonstrate our approach on two simulated examples: (i) synthetically generated linear systems, and (ii) generating wind disturbances for the popular PX4 controller in the AirSim simulator. On these examples, we demonstrate that our approach outperforms several baseline approaches (including H-infinity disturbance generation and gradient-based methods).} }
Endnote
%0 Conference Paper %T Generating Adversarial Disturbances for Controller Verification %A Udaya Ghai %A David Snyder %A Anirudha Majumdar %A Elad Hazan %B Proceedings of the 3rd Conference on Learning for Dynamics and Control %C Proceedings of Machine Learning Research %D 2021 %E Ali Jadbabaie %E John Lygeros %E George J. Pappas %E Pablo A. Parrilo %E Benjamin Recht %E Claire J. Tomlin %E Melanie N. Zeilinger %F pmlr-v144-ghai21a %I PMLR %P 1192--1204 %U https://proceedings.mlr.press/v144/ghai21a.html %V 144 %X We consider the problem of generating maximally adversarial disturbances for a given controller assuming only blackbox access to it. We propose an online learning approach to this problem that adaptively generates disturbances based on control inputs chosen by the controller. The goal of the disturbance generator is to minimize regret versus a benchmark disturbance-generating policy class, i.e., to maximize the cost incurred by the controller as well as possible compared to the best possible disturbance generator in hindsight (chosen from a benchmark policy class). In the setting where the dynamics are linear and the costs are quadratic, we formulate our problem as an online trust region (OTR) problem with memory and present a new online learning algorithm (MOTR) for this problem. We prove that this method competes with the best disturbance generator in hindsight (chosen from a rich class of benchmark policies that includes linear-dynamical disturbance generating policies). We demonstrate our approach on two simulated examples: (i) synthetically generated linear systems, and (ii) generating wind disturbances for the popular PX4 controller in the AirSim simulator. On these examples, we demonstrate that our approach outperforms several baseline approaches (including H-infinity disturbance generation and gradient-based methods).
APA
Ghai, U., Snyder, D., Majumdar, A. & Hazan, E.. (2021). Generating Adversarial Disturbances for Controller Verification. Proceedings of the 3rd Conference on Learning for Dynamics and Control, in Proceedings of Machine Learning Research 144:1192-1204 Available from https://proceedings.mlr.press/v144/ghai21a.html.

Related Material