[edit]
Optimal Algorithms for Submodular Maximization with Distributed Constraints
Proceedings of the 3rd Conference on Learning for Dynamics and Control, PMLR 144:150-162, 2021.
Abstract
We consider a class of discrete optimization problems that aim to maximize a submodular objective function subject to a distributed partition matroid constraint. More precisely, we consider a networked scenario in which multiple agents choose actions from local strategy sets with the goal of maximizing a submodular objective function defined over the set of all possible actions. Given this distributed setting, we develop Constraint-Distributed Continuous Greedy (CDCG), a message passing algorithm that converges to the tight (1-1/e) approximation factor of the optimum global solution using only local computation and communication. It is known that a sequential greedy algorithm can only achieve a 1/2 multiplicative approximation of the optimal solution for this class of problems in the distributed setting. Our framework relies on lifting the discrete problem to a continuous domain and developing a consensus algorithm that achieves the tight (1-1/e) approximation guarantee of the global discrete solution once a proper rounding scheme is applied. We also offer empirical results from a multi-agent area coverage problem to show that the proposed method significantly outperforms the state-of-the-art sequential greedy method.