[edit]
Learning Stabilizing Controllers for Unstable Linear Quadratic Regulators from a Single Trajectory
Proceedings of the 3rd Conference on Learning for Dynamics and Control, PMLR 144:664-676, 2021.
Abstract
The principal task to control dynamical systems is to ensure their stability. When the system is unknown, robust approaches are promising since they aim to stabilize a large set of plausible systems simultaneously. We study linear controllers under quadratic costs model also known as linear quadratic regulators (LQR). We present two different semi-definite programs (SDP) which results in a controller that stabilizes all systems within an ellipsoid uncertainty set. We further show that the feasibility conditions of the proposed SDPs are \emph{equivalent}. Using the derived robust controller syntheses, we propose an efficient data dependent algorithm – \textsc{eXploration} – that with high probability quickly identifies a stabilizing controller. Our approach can be used to initialize existing algorithms that require a stabilizing controller as an input while adding constant to the regret. We further propose different heuristics which empirically reduce the number of steps taken by \textsc{eXploration} and reduce the suffered cost while searching for a stabilizing controller.