Topographic Analysis of Correlated Components


H. Sasaki, M.U. Gutmann, H. Shouno, A. Hyvärinen ;
Proceedings of the Asian Conference on Machine Learning, PMLR 25:365-378, 2012.


Independent component analysis (ICA) is a method to estimate components which are as statistically independent as possible. However, in many practical applications, the estimated components are not independent. Recent variants of ICA have made use of such residual dependencies to estimate an ordering (topography) of the components. Like in ICA, the components in those variants are assumed to be uncorrelated, which might be a rather strict condition. In this paper, we address this shortcoming. We propose a generative model for the source where the components can have linear and higher order correlations, which generalizes models in use so far. Based on the model, we derive a method to estimate topographic representations. In numerical experiments on artificial data, the new method is shown to be more widely applicable than previously proposed extensions of ICA. We learn topographic representations for two kinds of real data sets: for outputs of simulated complex cells in the primary visual cortex and for text data.

Related Material