Riemannian Similarity Learning


Li Cheng ;
Proceedings of the 30th International Conference on Machine Learning, PMLR 28(3):540-548, 2013.


We consider a similarity-score based paradigm to address scenarios where either the class labels are only partially revealed during learning, or the training and testing data are drawn from heterogeneous sources. The learning problem is subsequently formulated as optimization over a bilinear form of fixed rank. Our paradigm bears similarity to metric learning, where the major difference lies in its aim of learning a rectangular similarity matrix, instead of a proper metric. We tackle this problem in a Riemannian optimization framework. In particular, we consider its applications in pairwise-based action recognition, and cross-domain image-based object recognition. In both applications, the proposed algorithm produces competitive performance on respective benchmark datasets.

Related Material