# Fast Probabilistic Optimization from Noisy Gradients

[edit]

Philipp Hennig
;

Proceedings of the 30th International Conference on Machine Learning, PMLR 28(1):62-70, 2013.

#### Abstract

Stochastic gradient descent remains popular in large-scale machine learning, on account of its very low computational cost and robustness to noise. However, gradient descent is only linearly efficient and not transformation invariant. Scaling by a local measure can substantially improve its performance. One natural choice of such a scale is the Hessian of the objective function: Were it available, it would turn linearly efficient gradient descent into the quadratically efficient Newton-Raphson optimization. Existing covariant methods, though, are either super-linearly expensive or do not address noise. Generalising recent results, this paper constructs a nonparametric Bayesian quasi-Newton algorithm that learns gradient and Hessian from noisy evaluations of the gradient. Importantly, the resulting algorithm, like stochastic gradient descent, has cost linear in the number of input dimensions.

#### Related Material