Quantile Regression for Large-scale Applications

[edit]

Jiyan Yang, Xiangrui Meng, Michael Mahoney ;
Proceedings of the 30th International Conference on Machine Learning, PMLR 28(3):881-887, 2013.

Abstract

Quantile regression is a method to estimate the quantiles of the conditional distribution of a response variable, and as such it permits a much more accurate portrayal of the relationship between the response variable and observed covariates than methods such as Least-squares or Least Absolute Deviations regression. It can be expressed as a linear program, and interior-point methods can be used to find a solution for moderately large problems. Dealing with very large problems, \emphe.g., involving data up to and beyond the terabyte regime, remains a challenge. Here, we present a randomized algorithm that runs in time that is nearly linear in the size of the input and that, with constant probability, computes a (1+ε) approximate solution to an arbitrary quantile regression problem. Our algorithm computes a low-distortion subspace-preserving embedding with respect to the loss function of quantile regression. Our empirical evaluation illustrates that our algorithm is competitive with the best previous work on small to medium-sized problems, and that it can be implemented in MapReduce-like environments and applied to terabyte-sized problems.

Related Material