Q-learning for history-based reinforcement learning

[edit]

Mayank Daswani, Peter Sunehag, Marcus Hutter ;
Proceedings of the 5th Asian Conference on Machine Learning, PMLR 29:213-228, 2013.

Abstract

We extend the Q-learning algorithm from the Markov Decision Process setting to problems where observations are non-Markov and do not reveal the full state of the world i.e. to POMDPs. We do this in a natural manner by adding \ell_0 regularisation to the pathwise squared Q-learning objective function and then optimise this over both a choice of map from history to states and the resulting MDP parameters. The optimisation procedure involves a stochastic search over the map class nested with classical Q-learning of the parameters. This algorithm fits perfectly into the feature reinforcement learning framework, which chooses maps based on a cost criteria. The cost criterion used so far for feature reinforcement learning has been model-based and aimed at predicting future states and rewards. Instead we directly predict the return, which is what is needed for choosing optimal actions. Our Q-learning criteria also lends itself immediately to a function approximation setting where features are chosen based on the history. This algorithm is somewhat similar to the recent line of work on lasso temporal difference learning which aims at finding a small feature set with which one can perform policy evaluation. The distinction is that we aim directly for learning the Q-function of the optimal policy and we use \ell_0 instead of \ell_1 regularisation. We perform an experimental evaluation on classical benchmark domains and find improvement in convergence speed as well as in economy of the state representation. We also compare against MC-AIXI on the large Pocman domain and achieve competitive performance in average reward. We use less than half the CPU time and 36 times less memory. Overall, our algorithm hQL provides a better combination of computational, memory and data efficiency than existing algorithms in this setting.

Related Material