Second Order Online Collaborative Filtering

Jing Lu, Steven Hoi, Jialei Wang
Proceedings of the 5th Asian Conference on Machine Learning, PMLR 29:325-340, 2013.

Abstract

Collaborative Filtering (CF) is one of the most successful learning techniques in building real-world recommender systems. Traditional CF algorithms are often based on batch machine learning methods which suffer from several critical drawbacks, e.g., extremely expensive model retraining cost whenever new samples arrive, unable to capture the latest change of user preferences over time, and high cost and slow reaction to new users or products extension. Such limitations make batch learning based CF methods unsuitable for real-world online applications where data often arrives sequentially and user preferences may change dynamically and rapidly. To address these limitations, we investigate online collaborative filtering techniques for building live recommender systems where the CF model can evolve on-the-fly over time. Unlike the regular first order CF algorithms (e.g., online gradient descent for CF) that converge slowly, in this paper, we present a new framework of second order online collaborative filtering, i.e., Confidence Weighted Online Collaborative Filtering (CWOCF), which applies the second order online optimization methodology to tackle the online collaborative filtering task. We conduct extensive experiments on several large-scale datasets, in which the encouraging results demonstrate that the proposed algorithms obtain significantly lower errors (both RMSE and MAE) than the state-of-the-art first order CF algorithms when receiving the same amount of training data in the online learning process.

Cite this Paper


BibTeX
@InProceedings{pmlr-v29-Lu13, title = {Second Order Online Collaborative Filtering}, author = {Lu, Jing and Hoi, Steven and Wang, Jialei}, booktitle = {Proceedings of the 5th Asian Conference on Machine Learning}, pages = {325--340}, year = {2013}, editor = {Ong, Cheng Soon and Ho, Tu Bao}, volume = {29}, series = {Proceedings of Machine Learning Research}, address = {Australian National University, Canberra, Australia}, month = {13--15 Nov}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v29/Lu13.pdf}, url = {https://proceedings.mlr.press/v29/Lu13.html}, abstract = {Collaborative Filtering (CF) is one of the most successful learning techniques in building real-world recommender systems. Traditional CF algorithms are often based on batch machine learning methods which suffer from several critical drawbacks, e.g., extremely expensive model retraining cost whenever new samples arrive, unable to capture the latest change of user preferences over time, and high cost and slow reaction to new users or products extension. Such limitations make batch learning based CF methods unsuitable for real-world online applications where data often arrives sequentially and user preferences may change dynamically and rapidly. To address these limitations, we investigate online collaborative filtering techniques for building live recommender systems where the CF model can evolve on-the-fly over time. Unlike the regular first order CF algorithms (e.g., online gradient descent for CF) that converge slowly, in this paper, we present a new framework of second order online collaborative filtering, i.e., Confidence Weighted Online Collaborative Filtering (CWOCF), which applies the second order online optimization methodology to tackle the online collaborative filtering task. We conduct extensive experiments on several large-scale datasets, in which the encouraging results demonstrate that the proposed algorithms obtain significantly lower errors (both RMSE and MAE) than the state-of-the-art first order CF algorithms when receiving the same amount of training data in the online learning process.} }
Endnote
%0 Conference Paper %T Second Order Online Collaborative Filtering %A Jing Lu %A Steven Hoi %A Jialei Wang %B Proceedings of the 5th Asian Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2013 %E Cheng Soon Ong %E Tu Bao Ho %F pmlr-v29-Lu13 %I PMLR %P 325--340 %U https://proceedings.mlr.press/v29/Lu13.html %V 29 %X Collaborative Filtering (CF) is one of the most successful learning techniques in building real-world recommender systems. Traditional CF algorithms are often based on batch machine learning methods which suffer from several critical drawbacks, e.g., extremely expensive model retraining cost whenever new samples arrive, unable to capture the latest change of user preferences over time, and high cost and slow reaction to new users or products extension. Such limitations make batch learning based CF methods unsuitable for real-world online applications where data often arrives sequentially and user preferences may change dynamically and rapidly. To address these limitations, we investigate online collaborative filtering techniques for building live recommender systems where the CF model can evolve on-the-fly over time. Unlike the regular first order CF algorithms (e.g., online gradient descent for CF) that converge slowly, in this paper, we present a new framework of second order online collaborative filtering, i.e., Confidence Weighted Online Collaborative Filtering (CWOCF), which applies the second order online optimization methodology to tackle the online collaborative filtering task. We conduct extensive experiments on several large-scale datasets, in which the encouraging results demonstrate that the proposed algorithms obtain significantly lower errors (both RMSE and MAE) than the state-of-the-art first order CF algorithms when receiving the same amount of training data in the online learning process.
RIS
TY - CPAPER TI - Second Order Online Collaborative Filtering AU - Jing Lu AU - Steven Hoi AU - Jialei Wang BT - Proceedings of the 5th Asian Conference on Machine Learning DA - 2013/10/21 ED - Cheng Soon Ong ED - Tu Bao Ho ID - pmlr-v29-Lu13 PB - PMLR DP - Proceedings of Machine Learning Research VL - 29 SP - 325 EP - 340 L1 - http://proceedings.mlr.press/v29/Lu13.pdf UR - https://proceedings.mlr.press/v29/Lu13.html AB - Collaborative Filtering (CF) is one of the most successful learning techniques in building real-world recommender systems. Traditional CF algorithms are often based on batch machine learning methods which suffer from several critical drawbacks, e.g., extremely expensive model retraining cost whenever new samples arrive, unable to capture the latest change of user preferences over time, and high cost and slow reaction to new users or products extension. Such limitations make batch learning based CF methods unsuitable for real-world online applications where data often arrives sequentially and user preferences may change dynamically and rapidly. To address these limitations, we investigate online collaborative filtering techniques for building live recommender systems where the CF model can evolve on-the-fly over time. Unlike the regular first order CF algorithms (e.g., online gradient descent for CF) that converge slowly, in this paper, we present a new framework of second order online collaborative filtering, i.e., Confidence Weighted Online Collaborative Filtering (CWOCF), which applies the second order online optimization methodology to tackle the online collaborative filtering task. We conduct extensive experiments on several large-scale datasets, in which the encouraging results demonstrate that the proposed algorithms obtain significantly lower errors (both RMSE and MAE) than the state-of-the-art first order CF algorithms when receiving the same amount of training data in the online learning process. ER -
APA
Lu, J., Hoi, S. & Wang, J.. (2013). Second Order Online Collaborative Filtering. Proceedings of the 5th Asian Conference on Machine Learning, in Proceedings of Machine Learning Research 29:325-340 Available from https://proceedings.mlr.press/v29/Lu13.html.

Related Material