Uncover Topic-Sensitive Information Diffusion Networks

[edit]

Nan Du, Le Song, Hyenkyun Woo, Hongyuan Zha ;
Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics, PMLR 31:229-237, 2013.

Abstract

Analyzing the spreading patterns of memes with respect to their topic distributions and the underlying diffusion network structures is an important task in social network analysis. This task in many cases becomes very challenging since the underlying diffusion networks are often hidden, and the topic specific transmission rates are unknown either. In this paper, we propose a continuous time model, TopicCascade, for topic-sensitive information diffusion networks, and infer the hidden diffusion networks and the topic dependent transmission rates from the observed time stamps and contents of cascades. One attractive property of the model is that its parameters can be estimated via a convex optimization which we solve with an efficient proximal gradient based block coordinate descent (BCD) algorithm. In both synthetic and real-world data, we show that our method significantly improves over the previous state-of-the-art models in terms of both recovering the hidden diffusion networks and predicting the transmission times of memes.

Related Material