New Algorithms for Learning Incoherent and Overcomplete Dictionaries

Sanjeev Arora, Rong Ge, Ankur Moitra
; Proceedings of The 27th Conference on Learning Theory, PMLR 35:779-806, 2014.

Abstract

In \em sparse recovery we are given a matrix A ∈\mathbbR^n\times m (“the dictionary”) and a vector of the form A X where X is \em sparse, and the goal is to recover X. This is a central notion in signal processing, statistics and machine learning. But in applications such as \em sparse coding, edge detection, compression and super resolution, the dictionary A is unknown and has to be learned from random examples of the form Y = AX where X is drawn from an appropriate distribution — this is the \em dictionary learning problem. In most settings, A is \em overcomplete: it has more columns than rows. This paper presents a polynomial-time algorithm for learning overcomplete dictionaries; the only previously known algorithm with provable guarantees is the recent work of Spielman et al. (2012) who who gave an algorithm for the undercomplete case, which is rarely the case in applications. Our algorithm applies to \em incoherent dictionaries which have been a central object of study since they were introduced in seminal work of Donoho and Huo (1999). In particular, a dictionary is μ-incoherent if each pair of columns has inner product at most μ/ \sqrtn. The algorithm makes natural stochastic assumptions about the unknown sparse vector X, which can contain k ≤c \min(\sqrtn/μ\log n, m^1/2 - η) non-zero entries (for any η> 0). This is close to the best k allowable by the best sparse recovery algorithms \em even if one knows the dictionary A exactly. Moreover, both the running time and sample complexity depend on \log 1/ε, where εis the target accuracy, and so our algorithms converge very quickly to the true dictionary. Our algorithm can also tolerate substantial amounts of noise provided it is incoherent with respect to the dictionary (e.g., Gaussian). In the noisy setting, our running time and sample complexity depend polynomially on 1/ε, and this is necessary.

Cite this Paper


BibTeX
@InProceedings{pmlr-v35-arora14, title = {New Algorithms for Learning Incoherent and Overcomplete Dictionaries }, author = {Sanjeev Arora and Rong Ge and Ankur Moitra}, booktitle = {Proceedings of The 27th Conference on Learning Theory}, pages = {779--806}, year = {2014}, editor = {Maria Florina Balcan and Vitaly Feldman and Csaba Szepesvári}, volume = {35}, series = {Proceedings of Machine Learning Research}, address = {Barcelona, Spain}, month = {13--15 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v35/arora14.pdf}, url = {http://proceedings.mlr.press/v35/arora14.html}, abstract = {In \em sparse recovery we are given a matrix A ∈\mathbbR^n\times m (“the dictionary”) and a vector of the form A X where X is \em sparse, and the goal is to recover X. This is a central notion in signal processing, statistics and machine learning. But in applications such as \em sparse coding, edge detection, compression and super resolution, the dictionary A is unknown and has to be learned from random examples of the form Y = AX where X is drawn from an appropriate distribution — this is the \em dictionary learning problem. In most settings, A is \em overcomplete: it has more columns than rows. This paper presents a polynomial-time algorithm for learning overcomplete dictionaries; the only previously known algorithm with provable guarantees is the recent work of Spielman et al. (2012) who who gave an algorithm for the undercomplete case, which is rarely the case in applications. Our algorithm applies to \em incoherent dictionaries which have been a central object of study since they were introduced in seminal work of Donoho and Huo (1999). In particular, a dictionary is μ-incoherent if each pair of columns has inner product at most μ/ \sqrtn. The algorithm makes natural stochastic assumptions about the unknown sparse vector X, which can contain k ≤c \min(\sqrtn/μ\log n, m^1/2 - η) non-zero entries (for any η> 0). This is close to the best k allowable by the best sparse recovery algorithms \em even if one knows the dictionary A exactly. Moreover, both the running time and sample complexity depend on \log 1/ε, where εis the target accuracy, and so our algorithms converge very quickly to the true dictionary. Our algorithm can also tolerate substantial amounts of noise provided it is incoherent with respect to the dictionary (e.g., Gaussian). In the noisy setting, our running time and sample complexity depend polynomially on 1/ε, and this is necessary. } }
Endnote
%0 Conference Paper %T New Algorithms for Learning Incoherent and Overcomplete Dictionaries %A Sanjeev Arora %A Rong Ge %A Ankur Moitra %B Proceedings of The 27th Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2014 %E Maria Florina Balcan %E Vitaly Feldman %E Csaba Szepesvári %F pmlr-v35-arora14 %I PMLR %J Proceedings of Machine Learning Research %P 779--806 %U http://proceedings.mlr.press %V 35 %W PMLR %X In \em sparse recovery we are given a matrix A ∈\mathbbR^n\times m (“the dictionary”) and a vector of the form A X where X is \em sparse, and the goal is to recover X. This is a central notion in signal processing, statistics and machine learning. But in applications such as \em sparse coding, edge detection, compression and super resolution, the dictionary A is unknown and has to be learned from random examples of the form Y = AX where X is drawn from an appropriate distribution — this is the \em dictionary learning problem. In most settings, A is \em overcomplete: it has more columns than rows. This paper presents a polynomial-time algorithm for learning overcomplete dictionaries; the only previously known algorithm with provable guarantees is the recent work of Spielman et al. (2012) who who gave an algorithm for the undercomplete case, which is rarely the case in applications. Our algorithm applies to \em incoherent dictionaries which have been a central object of study since they were introduced in seminal work of Donoho and Huo (1999). In particular, a dictionary is μ-incoherent if each pair of columns has inner product at most μ/ \sqrtn. The algorithm makes natural stochastic assumptions about the unknown sparse vector X, which can contain k ≤c \min(\sqrtn/μ\log n, m^1/2 - η) non-zero entries (for any η> 0). This is close to the best k allowable by the best sparse recovery algorithms \em even if one knows the dictionary A exactly. Moreover, both the running time and sample complexity depend on \log 1/ε, where εis the target accuracy, and so our algorithms converge very quickly to the true dictionary. Our algorithm can also tolerate substantial amounts of noise provided it is incoherent with respect to the dictionary (e.g., Gaussian). In the noisy setting, our running time and sample complexity depend polynomially on 1/ε, and this is necessary.
RIS
TY - CPAPER TI - New Algorithms for Learning Incoherent and Overcomplete Dictionaries AU - Sanjeev Arora AU - Rong Ge AU - Ankur Moitra BT - Proceedings of The 27th Conference on Learning Theory PY - 2014/05/29 DA - 2014/05/29 ED - Maria Florina Balcan ED - Vitaly Feldman ED - Csaba Szepesvári ID - pmlr-v35-arora14 PB - PMLR SP - 779 DP - PMLR EP - 806 L1 - http://proceedings.mlr.press/v35/arora14.pdf UR - http://proceedings.mlr.press/v35/arora14.html AB - In \em sparse recovery we are given a matrix A ∈\mathbbR^n\times m (“the dictionary”) and a vector of the form A X where X is \em sparse, and the goal is to recover X. This is a central notion in signal processing, statistics and machine learning. But in applications such as \em sparse coding, edge detection, compression and super resolution, the dictionary A is unknown and has to be learned from random examples of the form Y = AX where X is drawn from an appropriate distribution — this is the \em dictionary learning problem. In most settings, A is \em overcomplete: it has more columns than rows. This paper presents a polynomial-time algorithm for learning overcomplete dictionaries; the only previously known algorithm with provable guarantees is the recent work of Spielman et al. (2012) who who gave an algorithm for the undercomplete case, which is rarely the case in applications. Our algorithm applies to \em incoherent dictionaries which have been a central object of study since they were introduced in seminal work of Donoho and Huo (1999). In particular, a dictionary is μ-incoherent if each pair of columns has inner product at most μ/ \sqrtn. The algorithm makes natural stochastic assumptions about the unknown sparse vector X, which can contain k ≤c \min(\sqrtn/μ\log n, m^1/2 - η) non-zero entries (for any η> 0). This is close to the best k allowable by the best sparse recovery algorithms \em even if one knows the dictionary A exactly. Moreover, both the running time and sample complexity depend on \log 1/ε, where εis the target accuracy, and so our algorithms converge very quickly to the true dictionary. Our algorithm can also tolerate substantial amounts of noise provided it is incoherent with respect to the dictionary (e.g., Gaussian). In the noisy setting, our running time and sample complexity depend polynomially on 1/ε, and this is necessary. ER -
APA
Arora, S., Ge, R. & Moitra, A.. (2014). New Algorithms for Learning Incoherent and Overcomplete Dictionaries . Proceedings of The 27th Conference on Learning Theory, in PMLR 35:779-806

Related Material