Faster and Sample Near-Optimal Algorithms for Proper Learning Mixtures of Gaussians

Constantinos Daskalakis, Gautam Kamath
Proceedings of The 27th Conference on Learning Theory, PMLR 35:1183-1213, 2014.

Abstract

We provide an algorithm for properly learning mixtures of two single-dimensional Gaussians without any separability assumptions. Given \tildeO(1/\varepsilon^2) samples from an unknown mixture, our algorithm outputs a mixture that is \varepsilon-close in total variation distance, in time \tildeO(1/\varepsilon^5). Our sample complexity is optimal up to logarithmic factors, and significantly improves upon both Kalai et al., whose algorithm has a prohibitive dependence on 1/\varepsilon, and Feldman et al., whose algorithm requires bounds on the mixture parameters and depends pseudo-polynomially in these parameters. One of our main contributions is an improved and generalized algorithm for selecting a good candidate distribution from among competing hypotheses. Namely, given a collection of N hypotheses containing at least one candidate that is \varepsilon-close to an unknown distribution, our algorithm outputs a candidate which is O(\varepsilon)-close to the distribution. The algorithm requires O(\logN/\varepsilon^2) samples from the unknown distribution and O(N \log N/\varepsilon^2) time, which improves previous such results (such as the Scheffé estimator) from a quadratic dependence of the running time on N to quasilinear. Given the wide use of such results for the purpose of hypothesis selection, our improved algorithm implies immediate improvements to any such use.

Cite this Paper


BibTeX
@InProceedings{pmlr-v35-daskalakis14, title = {Faster and Sample Near-Optimal Algorithms for Proper Learning Mixtures of Gaussians}, author = {Daskalakis, Constantinos and Kamath, Gautam}, booktitle = {Proceedings of The 27th Conference on Learning Theory}, pages = {1183--1213}, year = {2014}, editor = {Balcan, Maria Florina and Feldman, Vitaly and Szepesvári, Csaba}, volume = {35}, series = {Proceedings of Machine Learning Research}, address = {Barcelona, Spain}, month = {13--15 Jun}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v35/daskalakis14.pdf}, url = {https://proceedings.mlr.press/v35/daskalakis14.html}, abstract = {We provide an algorithm for properly learning mixtures of two single-dimensional Gaussians without any separability assumptions. Given \tildeO(1/\varepsilon^2) samples from an unknown mixture, our algorithm outputs a mixture that is \varepsilon-close in total variation distance, in time \tildeO(1/\varepsilon^5). Our sample complexity is optimal up to logarithmic factors, and significantly improves upon both Kalai et al., whose algorithm has a prohibitive dependence on 1/\varepsilon, and Feldman et al., whose algorithm requires bounds on the mixture parameters and depends pseudo-polynomially in these parameters. One of our main contributions is an improved and generalized algorithm for selecting a good candidate distribution from among competing hypotheses. Namely, given a collection of N hypotheses containing at least one candidate that is \varepsilon-close to an unknown distribution, our algorithm outputs a candidate which is O(\varepsilon)-close to the distribution. The algorithm requires O(\logN/\varepsilon^2) samples from the unknown distribution and O(N \log N/\varepsilon^2) time, which improves previous such results (such as the Scheffé estimator) from a quadratic dependence of the running time on N to quasilinear. Given the wide use of such results for the purpose of hypothesis selection, our improved algorithm implies immediate improvements to any such use. } }
Endnote
%0 Conference Paper %T Faster and Sample Near-Optimal Algorithms for Proper Learning Mixtures of Gaussians %A Constantinos Daskalakis %A Gautam Kamath %B Proceedings of The 27th Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2014 %E Maria Florina Balcan %E Vitaly Feldman %E Csaba Szepesvári %F pmlr-v35-daskalakis14 %I PMLR %P 1183--1213 %U https://proceedings.mlr.press/v35/daskalakis14.html %V 35 %X We provide an algorithm for properly learning mixtures of two single-dimensional Gaussians without any separability assumptions. Given \tildeO(1/\varepsilon^2) samples from an unknown mixture, our algorithm outputs a mixture that is \varepsilon-close in total variation distance, in time \tildeO(1/\varepsilon^5). Our sample complexity is optimal up to logarithmic factors, and significantly improves upon both Kalai et al., whose algorithm has a prohibitive dependence on 1/\varepsilon, and Feldman et al., whose algorithm requires bounds on the mixture parameters and depends pseudo-polynomially in these parameters. One of our main contributions is an improved and generalized algorithm for selecting a good candidate distribution from among competing hypotheses. Namely, given a collection of N hypotheses containing at least one candidate that is \varepsilon-close to an unknown distribution, our algorithm outputs a candidate which is O(\varepsilon)-close to the distribution. The algorithm requires O(\logN/\varepsilon^2) samples from the unknown distribution and O(N \log N/\varepsilon^2) time, which improves previous such results (such as the Scheffé estimator) from a quadratic dependence of the running time on N to quasilinear. Given the wide use of such results for the purpose of hypothesis selection, our improved algorithm implies immediate improvements to any such use.
RIS
TY - CPAPER TI - Faster and Sample Near-Optimal Algorithms for Proper Learning Mixtures of Gaussians AU - Constantinos Daskalakis AU - Gautam Kamath BT - Proceedings of The 27th Conference on Learning Theory DA - 2014/05/29 ED - Maria Florina Balcan ED - Vitaly Feldman ED - Csaba Szepesvári ID - pmlr-v35-daskalakis14 PB - PMLR DP - Proceedings of Machine Learning Research VL - 35 SP - 1183 EP - 1213 L1 - http://proceedings.mlr.press/v35/daskalakis14.pdf UR - https://proceedings.mlr.press/v35/daskalakis14.html AB - We provide an algorithm for properly learning mixtures of two single-dimensional Gaussians without any separability assumptions. Given \tildeO(1/\varepsilon^2) samples from an unknown mixture, our algorithm outputs a mixture that is \varepsilon-close in total variation distance, in time \tildeO(1/\varepsilon^5). Our sample complexity is optimal up to logarithmic factors, and significantly improves upon both Kalai et al., whose algorithm has a prohibitive dependence on 1/\varepsilon, and Feldman et al., whose algorithm requires bounds on the mixture parameters and depends pseudo-polynomially in these parameters. One of our main contributions is an improved and generalized algorithm for selecting a good candidate distribution from among competing hypotheses. Namely, given a collection of N hypotheses containing at least one candidate that is \varepsilon-close to an unknown distribution, our algorithm outputs a candidate which is O(\varepsilon)-close to the distribution. The algorithm requires O(\logN/\varepsilon^2) samples from the unknown distribution and O(N \log N/\varepsilon^2) time, which improves previous such results (such as the Scheffé estimator) from a quadratic dependence of the running time on N to quasilinear. Given the wide use of such results for the purpose of hypothesis selection, our improved algorithm implies immediate improvements to any such use. ER -
APA
Daskalakis, C. & Kamath, G.. (2014). Faster and Sample Near-Optimal Algorithms for Proper Learning Mixtures of Gaussians. Proceedings of The 27th Conference on Learning Theory, in Proceedings of Machine Learning Research 35:1183-1213 Available from https://proceedings.mlr.press/v35/daskalakis14.html.

Related Material