Multi-Task Learning for Subspace Segmentation


Yu Wang, David Wipf, Qing Ling, Wei Chen, Ian Wassell ;
Proceedings of the 32nd International Conference on Machine Learning, PMLR 37:1209-1217, 2015.


Subspace segmentation is the process of clustering a set of data points that are assumed to lie on the union of multiple linear or affine subspaces, and is increasingly being recognized as a fundamental tool for data analysis in high dimensional settings. Arguably one of the most successful approaches is based on the observation that the sparsest representation of a given point with respect to a dictionary formed by the others involves nonzero coefficients associated with points originating in the same subspace. Such sparse representations are computed independently for each data point via \ell_1-norm minimization and then combined into an affinity matrix for use by a final spectral clustering step. The downside of this procedure is two-fold. First, unlike canonical compressive sensing scenarios with ideally-randomized dictionaries, the data-dependent dictionaries here are unavoidably highly structured, disrupting many of the favorable properties of the \ell_1 norm. Secondly, by treating each data point independently, we ignore useful relationships between points that can be leveraged for jointly computing such sparse representations. Consequently, we motivate a multi-task learning-based framework for learning coupled sparse representations leading to a segmentation pipeline that is both robust against correlation structure and tailored to generate an optimal affinity matrix. Theoretical analysis and empirical tests are provided to support these claims.

Related Material