Low-Rank Spectral Learning with Weighted Loss Functions


Alex Kulesza, Nan Jiang, Satinder Singh ;
Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, PMLR 38:517-525, 2015.


Kulesza et al. recently observed that low-rank spectral learning algorithms, which discard the smallest singular values of a moment matrix during training, can behave in unexpected ways, producing large errors even when the discarded singular values are arbitrarily small. In this paper we prove that when learning predictive state representations those problematic cases disappear if we introduce a particular weighted loss function and learn using sufficiently large sets of statistics; our main result is a bound on the loss of the learned low-rank model in terms of the singular values that are discarded. Practically speaking, this suggests that regardless of the model rank we should use the largest possible sets of statistics, and we show empirically that this is true on both synthetic and real-world domains.

Related Material