Max-Margin Zero-Shot Learning for Multi-class Classification

[edit]

Xin Li, Yuhong Guo ;
Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, PMLR 38:626-634, 2015.

Abstract

Due to the dramatic expanse of data categories and the lack of labeled instances, zero-shot learning, which transfers knowledge from observed classes to recognize unseen classes, has started drawing a lot of attention from the research community. In this paper, we propose a semi-supervised max-margin learning framework that integrates the semi-supervised classification problem over observed classes and the unsupervised clustering problem over unseen classes together to tackle zero-shot multi-class classification. By further integrating label embedding into this framework, we produce a dual formulation that permits convenient incorporation of auxiliary label semantic knowledge to improve zero-shot learning. We conduct extensive experiments on three standard image data sets to evaluate the proposed approach by comparing to two state-of-the-art methods. Our results demonstrate the efficacy of the proposed framework.

Related Material