A Dirichlet Process Mixture Model for Spherical Data

[edit]

Julian Straub, Jason Chang, Oren Freifeld, John Fisher III ;
Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, PMLR 38:930-938, 2015.

Abstract

Directional data, naturally represented as points on the unit sphere, appear in many applications. However, unlike the case of Euclidean data, flexible mixture models on the sphere that can capture correlations, handle an unknown number of components and extend readily to high-dimensional data have yet to be suggested. For this purpose we propose a Dirichlet process mixture model of Gaussian distributions in distinct tangent spaces (DP-TGMM) to the sphere. Importantly, the formulation of the proposed model allows the extension of recent advances in efficient inference for Bayesian nonparametric models to the spherical domain. Experiments on synthetic data as well as real-world 3D surface normal and 20-dimensional semantic word vector data confirm the expressiveness and applicability of the DP-TGMM.

Related Material