Predicting Preference Reversals via Gaussian Process Uncertainty Aversion

Rikiya Takahashi, Tetsuro Morimura
Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, PMLR 38:958-967, 2015.

Abstract

Modeling of a product or service’s attractiveness as a function of its own attributes (e.g., price and quality) is one of the foundations in econometric forecasts, which have been provided with an assumption that each human rationally has a consistent preference order among his choice decisions. Yet the preference orders by real humans become irrationally reversed, when the choice set of available options is manipulated. In order to accurately predict choice decisions involving preference reversals, which existing econometric methods have failed to incorporate, the authors introduce a new cognitive choice model whose parameters are efficiently fitted with a global convex optimization algorithm. The proposed model captures each human as a Bayesian decision maker facing a mental conflict between objective evaluation samples and a subjective prior, where the underlying objective evaluation function is rationally independent from contexts while the subjective prior is irrationally determined by each choice set. As the key idea to analytically handle the irrationality and to yield the convex optimization, the Bayesian decision mechanism is implemented as a closed-form Gaussian process regression using similarities among the available options in each context. By explaining the irrational decisions as a consequence of averting uncertainty, the proposed model outperformed the existing econometric models in predicting the irrational choice decisions recorded in real-world datasets.

Cite this Paper


BibTeX
@InProceedings{pmlr-v38-takahashi15, title = {{Predicting Preference Reversals via Gaussian Process Uncertainty Aversion}}, author = {Takahashi, Rikiya and Morimura, Tetsuro}, booktitle = {Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics}, pages = {958--967}, year = {2015}, editor = {Lebanon, Guy and Vishwanathan, S. V. N.}, volume = {38}, series = {Proceedings of Machine Learning Research}, address = {San Diego, California, USA}, month = {09--12 May}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v38/takahashi15.pdf}, url = {https://proceedings.mlr.press/v38/takahashi15.html}, abstract = {Modeling of a product or service’s attractiveness as a function of its own attributes (e.g., price and quality) is one of the foundations in econometric forecasts, which have been provided with an assumption that each human rationally has a consistent preference order among his choice decisions. Yet the preference orders by real humans become irrationally reversed, when the choice set of available options is manipulated. In order to accurately predict choice decisions involving preference reversals, which existing econometric methods have failed to incorporate, the authors introduce a new cognitive choice model whose parameters are efficiently fitted with a global convex optimization algorithm. The proposed model captures each human as a Bayesian decision maker facing a mental conflict between objective evaluation samples and a subjective prior, where the underlying objective evaluation function is rationally independent from contexts while the subjective prior is irrationally determined by each choice set. As the key idea to analytically handle the irrationality and to yield the convex optimization, the Bayesian decision mechanism is implemented as a closed-form Gaussian process regression using similarities among the available options in each context. By explaining the irrational decisions as a consequence of averting uncertainty, the proposed model outperformed the existing econometric models in predicting the irrational choice decisions recorded in real-world datasets.} }
Endnote
%0 Conference Paper %T Predicting Preference Reversals via Gaussian Process Uncertainty Aversion %A Rikiya Takahashi %A Tetsuro Morimura %B Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics %C Proceedings of Machine Learning Research %D 2015 %E Guy Lebanon %E S. V. N. Vishwanathan %F pmlr-v38-takahashi15 %I PMLR %P 958--967 %U https://proceedings.mlr.press/v38/takahashi15.html %V 38 %X Modeling of a product or service’s attractiveness as a function of its own attributes (e.g., price and quality) is one of the foundations in econometric forecasts, which have been provided with an assumption that each human rationally has a consistent preference order among his choice decisions. Yet the preference orders by real humans become irrationally reversed, when the choice set of available options is manipulated. In order to accurately predict choice decisions involving preference reversals, which existing econometric methods have failed to incorporate, the authors introduce a new cognitive choice model whose parameters are efficiently fitted with a global convex optimization algorithm. The proposed model captures each human as a Bayesian decision maker facing a mental conflict between objective evaluation samples and a subjective prior, where the underlying objective evaluation function is rationally independent from contexts while the subjective prior is irrationally determined by each choice set. As the key idea to analytically handle the irrationality and to yield the convex optimization, the Bayesian decision mechanism is implemented as a closed-form Gaussian process regression using similarities among the available options in each context. By explaining the irrational decisions as a consequence of averting uncertainty, the proposed model outperformed the existing econometric models in predicting the irrational choice decisions recorded in real-world datasets.
RIS
TY - CPAPER TI - Predicting Preference Reversals via Gaussian Process Uncertainty Aversion AU - Rikiya Takahashi AU - Tetsuro Morimura BT - Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics DA - 2015/02/21 ED - Guy Lebanon ED - S. V. N. Vishwanathan ID - pmlr-v38-takahashi15 PB - PMLR DP - Proceedings of Machine Learning Research VL - 38 SP - 958 EP - 967 L1 - http://proceedings.mlr.press/v38/takahashi15.pdf UR - https://proceedings.mlr.press/v38/takahashi15.html AB - Modeling of a product or service’s attractiveness as a function of its own attributes (e.g., price and quality) is one of the foundations in econometric forecasts, which have been provided with an assumption that each human rationally has a consistent preference order among his choice decisions. Yet the preference orders by real humans become irrationally reversed, when the choice set of available options is manipulated. In order to accurately predict choice decisions involving preference reversals, which existing econometric methods have failed to incorporate, the authors introduce a new cognitive choice model whose parameters are efficiently fitted with a global convex optimization algorithm. The proposed model captures each human as a Bayesian decision maker facing a mental conflict between objective evaluation samples and a subjective prior, where the underlying objective evaluation function is rationally independent from contexts while the subjective prior is irrationally determined by each choice set. As the key idea to analytically handle the irrationality and to yield the convex optimization, the Bayesian decision mechanism is implemented as a closed-form Gaussian process regression using similarities among the available options in each context. By explaining the irrational decisions as a consequence of averting uncertainty, the proposed model outperformed the existing econometric models in predicting the irrational choice decisions recorded in real-world datasets. ER -
APA
Takahashi, R. & Morimura, T.. (2015). Predicting Preference Reversals via Gaussian Process Uncertainty Aversion. Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 38:958-967 Available from https://proceedings.mlr.press/v38/takahashi15.html.

Related Material