Minimax Fixed-Design Linear Regression

Peter L. Bartlett, Wouter M. Koolen, Alan Malek, Eiji Takimoto, Manfred K. Warmuth
Proceedings of The 28th Conference on Learning Theory, PMLR 40:226-239, 2015.

Abstract

We consider a linear regression game in which the covariates are known in advance: at each round, the learner predicts a real-value, the adversary reveals a label, and the learner incurs a squared error loss. The aim is to minimize the regret with respect to linear predictions. For a variety of constraints on the adversary’s labels, we show that the minimax optimal strategy is linear, with a parameter choice that is reminiscent of ordinary least squares (and as easy to compute). The predictions depend on all covariates, past and future, with a particular weighting assigned to future covariates corresponding to the role that they play in the minimax regret. We study two families of label sequences: box constraints (under a covariate compatibility condition), and a weighted 2-norm constraint that emerges naturally from the analysis. The strategy is adaptive in the sense that it requires no knowledge of the constraint set. We obtain an explicit expression for the minimax regret for these games. For the case of uniform box constraints, we show that, with worst case covariate sequences, the regret is O(d\log T), with no dependence on the scaling of the covariates.

Cite this Paper


BibTeX
@InProceedings{pmlr-v40-Bartlett15, title = {Minimax Fixed-Design Linear Regression}, author = {Bartlett, Peter L. and Koolen, Wouter M. and Malek, Alan and Takimoto, Eiji and Warmuth, Manfred K.}, booktitle = {Proceedings of The 28th Conference on Learning Theory}, pages = {226--239}, year = {2015}, editor = {Grünwald, Peter and Hazan, Elad and Kale, Satyen}, volume = {40}, series = {Proceedings of Machine Learning Research}, address = {Paris, France}, month = {03--06 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v40/Bartlett15.pdf}, url = {https://proceedings.mlr.press/v40/Bartlett15.html}, abstract = {We consider a linear regression game in which the covariates are known in advance: at each round, the learner predicts a real-value, the adversary reveals a label, and the learner incurs a squared error loss. The aim is to minimize the regret with respect to linear predictions. For a variety of constraints on the adversary’s labels, we show that the minimax optimal strategy is linear, with a parameter choice that is reminiscent of ordinary least squares (and as easy to compute). The predictions depend on all covariates, past and future, with a particular weighting assigned to future covariates corresponding to the role that they play in the minimax regret. We study two families of label sequences: box constraints (under a covariate compatibility condition), and a weighted 2-norm constraint that emerges naturally from the analysis. The strategy is adaptive in the sense that it requires no knowledge of the constraint set. We obtain an explicit expression for the minimax regret for these games. For the case of uniform box constraints, we show that, with worst case covariate sequences, the regret is O(d\log T), with no dependence on the scaling of the covariates. } }
Endnote
%0 Conference Paper %T Minimax Fixed-Design Linear Regression %A Peter L. Bartlett %A Wouter M. Koolen %A Alan Malek %A Eiji Takimoto %A Manfred K. Warmuth %B Proceedings of The 28th Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2015 %E Peter Grünwald %E Elad Hazan %E Satyen Kale %F pmlr-v40-Bartlett15 %I PMLR %P 226--239 %U https://proceedings.mlr.press/v40/Bartlett15.html %V 40 %X We consider a linear regression game in which the covariates are known in advance: at each round, the learner predicts a real-value, the adversary reveals a label, and the learner incurs a squared error loss. The aim is to minimize the regret with respect to linear predictions. For a variety of constraints on the adversary’s labels, we show that the minimax optimal strategy is linear, with a parameter choice that is reminiscent of ordinary least squares (and as easy to compute). The predictions depend on all covariates, past and future, with a particular weighting assigned to future covariates corresponding to the role that they play in the minimax regret. We study two families of label sequences: box constraints (under a covariate compatibility condition), and a weighted 2-norm constraint that emerges naturally from the analysis. The strategy is adaptive in the sense that it requires no knowledge of the constraint set. We obtain an explicit expression for the minimax regret for these games. For the case of uniform box constraints, we show that, with worst case covariate sequences, the regret is O(d\log T), with no dependence on the scaling of the covariates.
RIS
TY - CPAPER TI - Minimax Fixed-Design Linear Regression AU - Peter L. Bartlett AU - Wouter M. Koolen AU - Alan Malek AU - Eiji Takimoto AU - Manfred K. Warmuth BT - Proceedings of The 28th Conference on Learning Theory DA - 2015/06/26 ED - Peter Grünwald ED - Elad Hazan ED - Satyen Kale ID - pmlr-v40-Bartlett15 PB - PMLR DP - Proceedings of Machine Learning Research VL - 40 SP - 226 EP - 239 L1 - http://proceedings.mlr.press/v40/Bartlett15.pdf UR - https://proceedings.mlr.press/v40/Bartlett15.html AB - We consider a linear regression game in which the covariates are known in advance: at each round, the learner predicts a real-value, the adversary reveals a label, and the learner incurs a squared error loss. The aim is to minimize the regret with respect to linear predictions. For a variety of constraints on the adversary’s labels, we show that the minimax optimal strategy is linear, with a parameter choice that is reminiscent of ordinary least squares (and as easy to compute). The predictions depend on all covariates, past and future, with a particular weighting assigned to future covariates corresponding to the role that they play in the minimax regret. We study two families of label sequences: box constraints (under a covariate compatibility condition), and a weighted 2-norm constraint that emerges naturally from the analysis. The strategy is adaptive in the sense that it requires no knowledge of the constraint set. We obtain an explicit expression for the minimax regret for these games. For the case of uniform box constraints, we show that, with worst case covariate sequences, the regret is O(d\log T), with no dependence on the scaling of the covariates. ER -
APA
Bartlett, P.L., Koolen, W.M., Malek, A., Takimoto, E. & Warmuth, M.K.. (2015). Minimax Fixed-Design Linear Regression. Proceedings of The 28th Conference on Learning Theory, in Proceedings of Machine Learning Research 40:226-239 Available from https://proceedings.mlr.press/v40/Bartlett15.html.

Related Material