# Bayesian Masking: Sparse Bayesian Estimation with Weaker Shrinkage Bias

[edit]

Yohei Kondo,
Shin-ichi Maeda,
Kohei Hayashi
;

Asian Conference on Machine Learning, PMLR 45:49-64, 2016.

#### Abstract

A common strategy for sparse linear regression is to introduce regularization, which eliminates irrelevant features by letting the corresponding weights be zeros. However, regularization often shrinks the estimator for relevant features, which leads to incorrect feature selection. Motivated by the above-mentioned issue, we propose Bayesian masking (BM), a sparse estimation method which imposes no regularization on the weights. The key concept of BM is to introduce binary latent variables that randomly mask features. Estimating the masking rates determines the relevance of the features automatically. We derive a variational Bayesian inference algorithm that maximizes the lower bound of the factorized information criterion (FIC), which is a recently developed asymptotic criterion for evaluating the marginal log-likelihood. In addition, we propose reparametrization to accelerate the convergence of the derived algorithm. Finally, we show that BM outperforms Lasso and automatic relevance determination (ARD) in terms of the sparsity-shrinkage trade-off.

#### Related Material