Asymmetric Multi-task Learning Based on Task Relatedness and Loss


Giwoong Lee, Eunho Yang, Sung Hwang ;
Proceedings of The 33rd International Conference on Machine Learning, PMLR 48:230-238, 2016.


We propose a novel multi-task learning method that can minimize the effect of negative transfer by allowing asymmetric transfer between the tasks based on task relatedness as well as the amount of individual task losses, which we refer to as Asymmetric Multi-task Learning (AMTL). To tackle this problem, we couple multiple tasks via a sparse, directed regularization graph, that enforces each task parameter to be reconstructed as a sparse combination of other tasks, which are selected based on the task-wise loss. We present two different algorithms to solve this joint learning of the task predictors and the regularization graph. The first algorithm solves for the original learning objective using alternative optimization, and the second algorithm solves an approximation of it using curriculum learning strategy, that learns one task at a time. We perform experiments on multiple datasets for classification and regression, on which we obtain significant improvements in performance over the single task learning and symmetric multitask learning baselines.

Related Material