On the Consistency of Feature Selection With Lasso for Non-linear Targets


Yue Zhang, Weihong Guo, Soumya Ray ;
Proceedings of The 33rd International Conference on Machine Learning, PMLR 48:183-191, 2016.


An important question in feature selection is whether a selection strategy recovers the “true” set of features, given enough data. We study this question in the context of the popular Least Absolute Shrinkage and Selection Operator (Lasso) feature selection strategy. In particular, we consider the scenario when the model is misspecified so that the learned model is linear while the underlying real target is nonlinear. Surprisingly, we prove that under certain conditions, Lasso is still able to recover the correct features in this case. We also carry out numerical studies to empirically verify the theoretical results and explore the necessity of the conditions under which the proof holds.

Related Material