[edit]
Conjugate-Computation Variational Inference : Converting Variational Inference in Non-Conjugate Models to Inferences in Conjugate Models
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, PMLR 54:878-887, 2017.
Abstract
Variational inference is computationally challenging in models that contain both conjugate and non-conjugate terms. Methods specifically designed for conjugate models, even though computationally efficient, find it difficult to deal with non-conjugate terms. On the other hand, stochastic-gradient methods can handle the non-conjugate terms but they usually ignore the conjugate structure of the model which might result in slow convergence. In this paper, we propose a new algorithm called Conjugate-computation Variational Inference (CVI) which brings the best of the two worlds together – it uses conjugate computations for the conjugate terms and employs stochastic gradients for the rest. We derive this algorithm by using a stochastic mirror-descent method in the mean-parameter space, and then expressing each gradient step as a variational inference in a conjugate model. We demonstrate our algorithm’s applicability to a large class of models and establish its convergence. Our experimental results show that our method converges much faster than the methods that ignore the conjugate structure of the model.