Parseval Networks: Improving Robustness to Adversarial Examples
[edit]
Proceedings of the 34th International Conference on Machine Learning, PMLR 70:854863, 2017.
Abstract
We introduce Parseval networks, a form of deep neural networks in which the Lipschitz constant of linear, convolutional and aggregation layers is constrained to be smaller than $1$. Parseval networks are empirically and theoretically motivated by an analysis of the robustness of the predictions made by deep neural networks when their input is subject to an adversarial perturbation. The most important feature of Parseval networks is to maintain weight matrices of linear and convolutional layers to be (approximately) Parseval tight frames, which are extensions of orthogonal matrices to nonsquare matrices. We describe how these constraints can be maintained efficiently during SGD. We show that Parseval networks match the stateoftheart regarding accuracy on CIFAR10/100 and Street View House Numbers (SVHN), while being more robust than their vanilla counterpart against adversarial examples. Incidentally, Parseval networks also tend to train faster and make a better usage of the full capacity of the networks.
Related Material


