Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

Chelsea Finn, Pieter Abbeel, Sergey Levine
Proceedings of the 34th International Conference on Machine Learning, PMLR 70:1126-1135, 2017.

Abstract

We propose an algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with gradient descent and applicable to a variety of different learning problems, including classification, regression, and reinforcement learning. The goal of meta-learning is to train a model on a variety of learning tasks, such that it can solve new learning tasks using only a small number of training samples. In our approach, the parameters of the model are explicitly trained such that a small number of gradient steps with a small amount of training data from a new task will produce good generalization performance on that task. In effect, our method trains the model to be easy to fine-tune. We demonstrate that this approach leads to state-of-the-art performance on two few-shot image classification benchmarks, produces good results on few-shot regression, and accelerates fine-tuning for policy gradient reinforcement learning with neural network policies.

Cite this Paper


BibTeX
@InProceedings{pmlr-v70-finn17a, title = {Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks}, author = {Chelsea Finn and Pieter Abbeel and Sergey Levine}, booktitle = {Proceedings of the 34th International Conference on Machine Learning}, pages = {1126--1135}, year = {2017}, editor = {Precup, Doina and Teh, Yee Whye}, volume = {70}, series = {Proceedings of Machine Learning Research}, month = {06--11 Aug}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v70/finn17a/finn17a.pdf}, url = { http://proceedings.mlr.press/v70/finn17a.html }, abstract = {We propose an algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with gradient descent and applicable to a variety of different learning problems, including classification, regression, and reinforcement learning. The goal of meta-learning is to train a model on a variety of learning tasks, such that it can solve new learning tasks using only a small number of training samples. In our approach, the parameters of the model are explicitly trained such that a small number of gradient steps with a small amount of training data from a new task will produce good generalization performance on that task. In effect, our method trains the model to be easy to fine-tune. We demonstrate that this approach leads to state-of-the-art performance on two few-shot image classification benchmarks, produces good results on few-shot regression, and accelerates fine-tuning for policy gradient reinforcement learning with neural network policies.} }
Endnote
%0 Conference Paper %T Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks %A Chelsea Finn %A Pieter Abbeel %A Sergey Levine %B Proceedings of the 34th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2017 %E Doina Precup %E Yee Whye Teh %F pmlr-v70-finn17a %I PMLR %P 1126--1135 %U http://proceedings.mlr.press/v70/finn17a.html %V 70 %X We propose an algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with gradient descent and applicable to a variety of different learning problems, including classification, regression, and reinforcement learning. The goal of meta-learning is to train a model on a variety of learning tasks, such that it can solve new learning tasks using only a small number of training samples. In our approach, the parameters of the model are explicitly trained such that a small number of gradient steps with a small amount of training data from a new task will produce good generalization performance on that task. In effect, our method trains the model to be easy to fine-tune. We demonstrate that this approach leads to state-of-the-art performance on two few-shot image classification benchmarks, produces good results on few-shot regression, and accelerates fine-tuning for policy gradient reinforcement learning with neural network policies.
APA
Finn, C., Abbeel, P. & Levine, S.. (2017). Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. Proceedings of the 34th International Conference on Machine Learning, in Proceedings of Machine Learning Research 70:1126-1135 Available from http://proceedings.mlr.press/v70/finn17a.html .

Related Material