Bottleneck Conditional Density Estimation

[edit]

Rui Shu, Hung H. Bui, Mohammad Ghavamzadeh ;
Proceedings of the 34th International Conference on Machine Learning, PMLR 70:3164-3172, 2017.

Abstract

We introduce a new framework for training deep generative models for high-dimensional conditional density estimation. The Bottleneck Conditional Density Estimator (BCDE) is a variant of the conditional variational autoencoder (CVAE) that employs layer(s) of stochastic variables as the bottleneck between the input x and target y, where both are high-dimensional. Crucially, we propose a new hybrid training method that blends the conditional generative model with a joint generative model. Hybrid blending is the key to effective training of the BCDE, which avoids overfitting and provides a novel mechanism for leveraging unlabeled data. We show that our hybrid training procedure enables models to achieve competitive results in the MNIST quadrant prediction task in the fully-supervised setting, and sets new benchmarks in the semi-supervised regime for MNIST, SVHN, and CelebA.

Related Material