Magnetic Hamiltonian Monte Carlo

[edit]

Nilesh Tripuraneni, Mark Rowland, Zoubin Ghahramani, Richard Turner ;
Proceedings of the 34th International Conference on Machine Learning, PMLR 70:3453-3461, 2017.

Abstract

Hamiltonian Monte Carlo (HMC) exploits Hamiltonian dynamics to construct efficient proposals for Markov chain Monte Carlo (MCMC). In this paper, we present a generalization of HMC which exploits non-canonical Hamiltonian dynamics. We refer to this algorithm as magnetic HMC, since in 3 dimensions a subset of the dynamics map onto the mechanics of a charged particle coupled to a magnetic field. We establish a theoretical basis for the use of non-canonical Hamiltonian dynamics in MCMC, and construct a symplectic, leapfrog-like integrator allowing for the implementation of magnetic HMC. Finally, we exhibit several examples where these non-canonical dynamics can lead to improved mixing of magnetic HMC relative to ordinary HMC.

Related Material