Underdamped Langevin MCMC: A non-asymptotic analysis

[edit]

Xiang Cheng, Niladri S. Chatterji, Peter L. Bartlett, Michael I. Jordan ;
Proceedings of the 31st Conference On Learning Theory, PMLR 75:300-323, 2018.

Abstract

We study the underdamped Langevin diffusion when the log of the target distribution is smooth and strongly concave. We present a MCMC algorithm based on its discretization and show that it achieves $\varepsilon$ error (in 2-Wasserstein distance) in $\mathcal{O}(\sqrt{d}/\varepsilon)$ steps. This is a significant improvement over the best known rate for overdamped Langevin MCMC, which is $\mathcal{O}(d/\varepsilon^2)$ steps under the same smoothness/concavity assumptions. The underdamped Langevin MCMC scheme can be viewed as a version of Hamiltonian Monte Carlo (HMC) which has been observed to outperform overdamped Langevin MCMC methods in a number of application areas. We provide quantitative rates that support this empirical wisdom.

Related Material