Non-Convex Matrix Completion Against a Semi-Random Adversary


Yu Cheng, Rong Ge ;
Proceedings of the 31st Conference On Learning Theory, PMLR 75:1362-1394, 2018.


Matrix completion is a well-studied problem with many machine learning applications. In practice, the problem is often solved by non-convex optimization algorithms. However, the current theoretical analysis for non-convex algorithms relies crucially on the assumption that each entry of the matrix is observed with exactly the same probability $p$, which is not realistic in practice. In this paper, we investigate a more realistic semi-random model, where the probability of observing each entry is {\em at least} $p$. Even with this mild semi-random perturbation, we can construct counter-examples where existing non-convex algorithms get stuck in bad local optima. In light of the negative results, we propose a pre-processing step that tries to re-weight the semi-random input, so that it becomes “similar” to a random input. We give a nearly-linear time algorithm for this problem, and show that after our pre-processing, all the local minima of the non-convex objective can be used to approximately recover the underlying ground-truth matrix.

Related Material