signSGD: Compressed Optimisation for NonConvex Problems
[edit]
Proceedings of the 35th International Conference on Machine Learning, PMLR 80:560569, 2018.
Abstract
Training large neural networks requires distributing learning across multiple workers, where the cost of communicating gradients can be a significant bottleneck. signSGD alleviates this problem by transmitting just the sign of each minibatch stochastic gradient. We prove that it can get the best of both worlds: compressed gradients and SGDlevel convergence rate. The relative $\ell_1/\ell_2$ geometry of gradients, noise and curvature informs whether signSGD or SGD is theoretically better suited to a particular problem. On the practical side we find that the momentum counterpart of signSGD is able to match the accuracy and convergence speed of Adam on deep Imagenet models. We extend our theory to the distributed setting, where the parameter server uses majority vote to aggregate gradient signs from each worker enabling 1bit compression of workerserver communication in both directions. Using a theorem by Gauss we prove that majority vote can achieve the same reduction in variance as full precision distributed SGD. Thus, there is great promise for signbased optimisation schemes to achieve fast communication and fast convergence. Code to reproduce experiments is to be found at https://github.com/jxbz/signSGD.
Related Material


