Constrained Interacting Submodular Groupings

[edit]

Andrew Cotter, Mahdi Milani Fard, Seungil You, Maya Gupta, Jeff Bilmes ;
Proceedings of the 35th International Conference on Machine Learning, PMLR 80:1068-1077, 2018.

Abstract

We introduce the problem of grouping a finite ground set into blocks where each block is a subset of the ground set and where: (i) the blocks are individually highly valued by a submodular function (both robustly and in the average case) while satisfying block-specific matroid constraints; and (ii) block scores interact where blocks are jointly scored highly, thus making the blocks mutually non-redundant. Submodular functions are good models of information and diversity; thus, the above can be seen as grouping the ground set into matroid constrained blocks that are both intra- and inter-diverse. Potential applications include forming ensembles of classification/regression models, partitioning data for parallel processing, and summarization. In the non-robust case, we reduce the problem to non-monotone submodular maximization subject to multiple matroid constraints. In the mixed robust/average case, we offer a bi-criterion guarantee for a polynomial time deterministic algorithm and a probabilistic guarantee for randomized algorithm, as long as the involved submodular functions (including the inter-block interaction terms) are monotone. We close with a case study in which we use these algorithms to find high quality diverse ensembles of classifiers, showing good results.

Related Material