The Generalization Error of Dictionary Learning with Moreau Envelopes

Alexandros Georgogiannis
Proceedings of the 35th International Conference on Machine Learning, PMLR 80:1617-1625, 2018.

Abstract

This is a theoretical study on the sample complexity of dictionary learning with a general type of reconstruction loss. The goal is to estimate a $m \times d$ matrix $D$ of unit-norm columns when the only available information is a set of training samples. Points $x$ in $\mathbb{R}^m$ are subsequently approximated by the linear combination $Da$ after solving the problem $\min_{a \in \mathbb{R}^d}  \Phi(x - Da) + g(a)$; function $g:\mathbb{R}^d \to [0,+\infty)$ is either an indicator function or a sparsity promoting regularizer. Here is considered the case where $ \Phi(x) = \inf_{z \in \mathbb{R}^m} { ||x-z||_2^2 + h(||z||_2)}$ and $h$ is an even and univariate function on the real line. Connections are drawn between $\Phi$ and the Moreau envelope of $h$. A new sample complexity result concerning the $k$-sparse dictionary problem removes the spurious condition on the coherence of $D$ appearing in previous works. Finally, comments are made on the approximation error of certain families of losses. The derived generalization bounds are of order $\mathcal{O}(\sqrt{\log n /n})$ and valid without any further restrictions on the set of dictionaries with unit-norm columns.

Cite this Paper


BibTeX
@InProceedings{pmlr-v80-georgogiannis18a, title = {The Generalization Error of Dictionary Learning with Moreau Envelopes}, author = {Georgogiannis, Alexandros}, booktitle = {Proceedings of the 35th International Conference on Machine Learning}, pages = {1617--1625}, year = {2018}, editor = {Dy, Jennifer and Krause, Andreas}, volume = {80}, series = {Proceedings of Machine Learning Research}, month = {10--15 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v80/georgogiannis18a/georgogiannis18a.pdf}, url = {https://proceedings.mlr.press/v80/georgogiannis18a.html}, abstract = {This is a theoretical study on the sample complexity of dictionary learning with a general type of reconstruction loss. The goal is to estimate a $m \times d$ matrix $D$ of unit-norm columns when the only available information is a set of training samples. Points $x$ in $\mathbb{R}^m$ are subsequently approximated by the linear combination $Da$ after solving the problem $\min_{a \in \mathbb{R}^d}  \Phi(x - Da) + g(a)$; function $g:\mathbb{R}^d \to [0,+\infty)$ is either an indicator function or a sparsity promoting regularizer. Here is considered the case where $ \Phi(x) = \inf_{z \in \mathbb{R}^m} { ||x-z||_2^2 + h(||z||_2)}$ and $h$ is an even and univariate function on the real line. Connections are drawn between $\Phi$ and the Moreau envelope of $h$. A new sample complexity result concerning the $k$-sparse dictionary problem removes the spurious condition on the coherence of $D$ appearing in previous works. Finally, comments are made on the approximation error of certain families of losses. The derived generalization bounds are of order $\mathcal{O}(\sqrt{\log n /n})$ and valid without any further restrictions on the set of dictionaries with unit-norm columns.} }
Endnote
%0 Conference Paper %T The Generalization Error of Dictionary Learning with Moreau Envelopes %A Alexandros Georgogiannis %B Proceedings of the 35th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2018 %E Jennifer Dy %E Andreas Krause %F pmlr-v80-georgogiannis18a %I PMLR %P 1617--1625 %U https://proceedings.mlr.press/v80/georgogiannis18a.html %V 80 %X This is a theoretical study on the sample complexity of dictionary learning with a general type of reconstruction loss. The goal is to estimate a $m \times d$ matrix $D$ of unit-norm columns when the only available information is a set of training samples. Points $x$ in $\mathbb{R}^m$ are subsequently approximated by the linear combination $Da$ after solving the problem $\min_{a \in \mathbb{R}^d}  \Phi(x - Da) + g(a)$; function $g:\mathbb{R}^d \to [0,+\infty)$ is either an indicator function or a sparsity promoting regularizer. Here is considered the case where $ \Phi(x) = \inf_{z \in \mathbb{R}^m} { ||x-z||_2^2 + h(||z||_2)}$ and $h$ is an even and univariate function on the real line. Connections are drawn between $\Phi$ and the Moreau envelope of $h$. A new sample complexity result concerning the $k$-sparse dictionary problem removes the spurious condition on the coherence of $D$ appearing in previous works. Finally, comments are made on the approximation error of certain families of losses. The derived generalization bounds are of order $\mathcal{O}(\sqrt{\log n /n})$ and valid without any further restrictions on the set of dictionaries with unit-norm columns.
APA
Georgogiannis, A.. (2018). The Generalization Error of Dictionary Learning with Moreau Envelopes. Proceedings of the 35th International Conference on Machine Learning, in Proceedings of Machine Learning Research 80:1617-1625 Available from https://proceedings.mlr.press/v80/georgogiannis18a.html.

Related Material