Non-linear motor control by local learning in spiking neural networks


Aditya Gilra, Wulfram Gerstner ;
Proceedings of the 35th International Conference on Machine Learning, PMLR 80:1773-1782, 2018.


Learning weights in a spiking neural network with hidden neurons, using local, stable and online rules, to control non-linear body dynamics is an open problem. Here, we employ a supervised scheme, Feedback-based Online Local Learning Of Weights (FOLLOW), to train a heterogeneous network of spiking neurons with hidden layers, to control a two-link arm so as to reproduce a desired state trajectory. We show that the network learns an inverse model of the non-linear dynamics, i.e. it infers from state trajectory as input to the network, the continuous-time command that produced the trajectory. Connection weights are adjusted via a local plasticity rule that involves pre-synaptic firing and post-synaptic feedback of the error in the inferred command. We propose a network architecture, termed differential feedforward, and show that it gives a lower test error than other feedforward and recurrent architectures. We demonstrate the performance of the inverse model to control a two-link arm along a desired trajectory.

Related Material