Pure Exploration in Infinitely-Armed Bandit Models with Fixed-Confidence

[edit]

Maryam Aziz, Jesse Anderton, Emilie Kaufmann, Javed Aslam ;
Proceedings of Algorithmic Learning Theory, PMLR 83:3-24, 2018.

Abstract

We consider the problem of near-optimal arm identification in the fixed confidence setting of the infinitely armed bandit problem when nothing is known about the arm reservoir distribution. We (1) introduce a PAC-like framework within which to derive and cast results; (2) derive a sample complexity lower bound for near-optimal arm identification; (3) propose an algorithm that identifies a nearly-optimal arm with high probability and derive an upper bound on its sample complexity which is within a log factor of our lower bound; and (4) discuss whether our $\log^2 \frac{1}{δ}$ dependence is inescapable for “two-phase” (select arms first, identify the best later) algorithms in the infinite setting. This work permits the application of bandit models to a broader class of problems where fewer assumptions hold.

Related Material